<u>PEOPLE'S UNIVERSITY, BHOPAL</u> (Applicable for Admitted from Academic Session 2019-20 onwards)

Programme: B. Tech. (Mechanical Engineering)

Subject Code	Subject Title	Credit			Theory			Practical		
BT-1501	Entrepreneurship & IPR	L	Т	Р	External	Internal	Total (100)	External	Internal	Total
D1-1501		3	1	-	(70)	(30)	Min: 40 (D Grade)	Nil	Nil	Nil
Duration	n of Theory (Externa	ls): 3	3 Ho	urs						
					lest of Two N	/lid Semeste	Assignment/Quiz/Attendance			
Theory Internal- Max Marks: 30				Ν	Iax Marks: 2	0	Max. Marks: 10			
Practical Internal Max Marks: Nil				L	ab work & S.	essional –	Assignment / Quiz/Attendance			
					Max Marks: Nil			Max. Marks:	Nil	

Pre-Requisite	Nil
	1. Create and exploit innovative business ideas and market opportunities.
Course Outcome	2. Turn market opportunities into a business plan.
Course Outcome	3. Demonstrate and present successful work, collaboration and division of tasks in a
	multidisciplinary and multicultural team.

Unit	Contents	Marks Weightage
I	Entrepreneurship: Definition and Functions of an Entrepreneur, Qualities of a good entrepreneur; Role of Entrepreneur in Economic Development; Theories of entrepreneur, Socio, Economic, Cultural and Psychological; Entrepreneur Traits and Behavior, Roles in economic growth, employment, social stability, export promotion and indigenization, Creating A Venture, Opportunity Analysis Competitive and Technical Factors, Sources of Fund. Forms of Business Organizations/Ownership - Formation of a Company - procedures and formalities for setting up of New Industry-Sources of information to contact for what and where.	14
п	 Management: Importance, Definition and functions; Dimensions of Organizations, Size/Specialization, Behavior Formalization, Authority Centralization, Departmentalization, Spam and Line of Control, Technology and Minzberg Organization Typology, Line, Staff & Matrix Organization. Motivation Theories - Maslow, Mc Cullen - Motivation model - need, want, motive and Behavior-Attitude Towards work - Self Assessment and Goal Setting - Achievement, Motivation and Behavior Measurement, SWOT analysis and TA analysis - Stress and Conflict Management; with uncertainty; Creativity and Innovation. 	14
ш	 Marketing: Importance, Definition, Core Concepts of need want and Demand, Project identification and formulation: Sources of Information - Opportunity Guidance - Choice of Technology and its evaluation; Consumer Behavior; Market Survey and research; Preliminary Project Report, Detailed Project Report, Assessing Viability and feasibility of a report. Exchange & Relationships, Product Value, Cost and satisfaction (goods and services) Marketing Environment; Selling, Marketing and Societal Marketing Concepts; Four P's, Product, Price, Placement, Promotion. Finance: Nature and Scope, Forms of Business Ownerships, Balance Sheet, Profit and loss Account, Fund Flow and Cash Flow Statements, Breakeven Point (BEP) and Financial Ratio analysis, pay-back period, NPV and capital budgeting. Subsidies and concessions for SSI - role of State and Central Government Agencies in Promotion of Small Scale Industry 	14
IV	Concept of Property: Theories of Property, Types of Intellectual Property- Origin and Development, Theories of Intellectual Property Rights, Need for Protecting Intellectual Property, Commercialization of Intellectual Property Rights by Licensing, Determining	14

<u>PEOPLE'S UNIVERSITY, BHOPAL</u> (Applicable for Admitted from Academic Session 2019-20 onwards)

Programme: B. Tech. (Mechanical Engineering)

	Financial Value of Intellectual Property Rights, Negotiating Payments Terms in Intellectual	
	Property Transaction	
	Introduction to Patent Law, (a) Paris Convention, (b) Patent Cooperation Treaty, (c)	
	WTO- TRIPS, Indian Patent Law, The Patents Act, 1970, Patentable Subject Matter,	
V	Patentability Criteria, Procedure for Filing Patent Applications, Patent Granting Procedure,	14
	Revocation, Patent Infringement and Remedies, Relevant Provisions of the Biological	
	Diversity Act, 2002, Access and Benefit Sharing Issues	

Text Book/References Books/ Websites:

- 1 Desai, N Arvind; Environment and Entrepreneure; Ashish Publishing House, New Delhi.
- 2 P.Saravanavel ; Entrepreneurial Development;
- 3 Tandon B.C; Environment and Entrepreneur; Asian Publishers, New Delhi.

- 4 P Narendra Singh.; Emerging Trends in Entrepreneurship Development Theories & Practices Entrepreneurship.
- 5 Gangadhara N Rao ; Growth of Enterprise in Industrial Estates.

Suggested List of Laboratory Experiments (Expandable):- Nil

<u>PEOPLE'S UNIVERSITY, BHOPAL</u> (Applicable for Admitted from Academic Session 2019-20 onwards)

Programme: B. Tech. (Mechanical Engineering)

Subject Code	Subject Title	Credit			Theory			Practical		
MET-1502	Power Plant	L	Т	Р	External	Internal	Total (100)	External	Internal	Total
	Engineering	3	1	-	- (70)	(30)	Min: 40 (D Grade)	Nil	Nil	Nil
Duration	of Theory (Externa	ls): 3	3 Ho	urs						
The complete the Assessed Marshare 20					Best of Two Mid Semester Test –			Assignment/Quiz/Attendance-		
Theory Internal- Max Marks: 50				Ν	Iax Marks: 2	0		Max. Marks: 10		
Drastical Internal May Marka Nil				L	ab work & S.	essional –		Assignment / Quiz/Attendance-		
i facucai internai Max Marks. Mi			Ν	Iax Marks: N	Jil		Max. Marks: Nil			

Pre-Requisite	Student should have basic knowledge of Thermodynamics Engineering.										
	1. Understand and discuss the energy resources and energy systems available for the production.										
Course Outcome	2. Analyze the efficiency and output of modern Rankine cycle steam power plants with superheat, regeneration, and irreversibilities.										
	3. Explain the basic principles of nuclear power plants, such as pressurized-water, boiling-water, and heavy-water reactors.										

Unit	Contents (Theory)	Marks Weightage
I	Introduction: General Sources of Power, Importance of Central Power Stations, Types of Power Stations – Steam, Nuclear, Diesel and hydro – Elements of Modern Thermal Power stations, brief layout and arrangement of elements and complements, Sitting layout of different power stations, Foundation, Elements of Electric power systems primary and secondary distribution substations.	14
п	Thermal Power Plant: Steam power plants selection of working medium, Heat Balance in steam cycles, Heat rates, Comparison of Efficiencies Gas Loop, Fuels and fuel handling System and Ash handling System ,Air pre-heater, Feed water pre-heaters, Steam Re-heaters, De aerators, Feed water treatment, Pumping and Regulation Water Walls, Steam Boilers, Cooling tower, Important instrumentation and piping of gas and water loop. Factors to be controlled from Maximum Efficiency and Variable Output.	14
III	Nuclear Power Station: Evolution of Nuclear Energy from atoms by fission and fusion, Chain Reactions, Fission Materials, Types of reactors, gas cooled, Boiling water liquid, Metal cooled and fast reactor, Arrangements of various elements in a Nuclear Power Station, Steam Cycles and boilers coolant heat exchangers, Reactor control, Reactor shielding and safety methods.	14
IV	Hydro Electric power station – Potential power with Reference to Rainfall and catchments area, Water storage, Equipment used in hydro electric power stations, Characteristics of hydraulic turbines, Comparison of the factors governing the cost of hydro steam and diesel power stations. Non Conventional Power Plant: principal selection features and layout of Solar, wind, tidal, geothermal, ocean, bio energy.	14
V	 Variable load problems: Idealized and realized load curves, Effect of variable load on plant design and Operation variable load operation and load dispatch. Power station Economics: Source of income, Cost of plant and production, Elements of cost, depreciation and replacement theory of rates. 	14

Programme: **B. Tech. (Mechanical Engineering)**

Semester –V

Text Book/References Books/ Websites:

- 1. P. K. Nag Power plant engineering Tata McGraw Hill.
- 2. Fredrick T. Mosse Power plant engineering East-West press.
- 3. A. Chkrabarti and M. L. Soni A text book of Power System Engineering Dhanpat Rai and Co.
- 4. Arora and Domkundwar A course in power plant engineering Dhanpat Rai and Co.
- 5. Thomas C. Elliott, Standard handbook of power plant engineering 1997 Tata McGraw Hill.

Koned triom Academic count Suggested List of Laboratory Experiments (Expandable):- Nil

<u>PEOPLE'S UNIVERSITY, BHOPAL</u> (Applicable for Admitted from Academic Session 2019-20 onwards)

Programme: B. Tech. (Mechanical Engineering)

Semester –V

Subj Coc	ect le	Sub	ject Title	(Credi	it		Theory		Practical					
MFT-	ЛЕТ 1502 М		heory of chines -II	L	Т	Р	External	Internal	Total (100)	External	Internal	Total (50)			
IVII: I -	1303	(D	ynamics)	3	1	1	(70)	(30)	Min: 40 (D Grade)	(35)	(15)	Min: 20 (D Grade)			
Duration of Theory (Externals): 3 Hours															
Theory Internal- Max Marks: 30Best of Two Mid Semester Test – Max Marks: 20Assignment/Quiz/A Max. Marks: 10										ent/Quiz/A arks: 10	ttendance				
Pr	actica	l Inte	rnal Max M	lark	s: 15		Lab work	& Sessiona	ıl –	Assignm	ent / Quiz/	Attendance			
							Max Marl	ks: 10		Max. Ma	urks: 05	N			
Pre-R	equis	site	Student sh	ould	have	gen	eral knowle	dge Mechai	nical engineeri	ng.					
			1. To und	ersta	nd w	orkiı	ng of variou	s types of e	ngines.						
Course	e Outo	come	2. To have	e firs	sthan	d kno	owledge of v	working of v	various system	rious systems in a vehicle.					
			3. Develo	p a s	trong	g bas	e to understa	and future d	evelopments i	n the field of	f engines				
Unit							Contents ((Theory)	\sim			Marks Weightage			
Ι	Dyna Morr	amics nent or	of Engine I n crankshaft	Mec , turi	h <mark>ani</mark> s 1ing 1	s ms : nom	Displaceme ent diagram	nt, velocity; ; fluctuation;	and acceleration of crankshaft	ion of pistor	n; turning	14			
	Gove	ernor	Mechanisn	ns: 1	Гурея	s of	governor, c	haracteristic	s of centrifug	gal governoi	r, gravity				
II	and spring controlled centrifugal governor, hunting of centrifugal governor, inertia governor. Performance parameter: Sensitivity, stability, Isochronism, Governor effort and power controlling force diagram Flywheel Numerical														
	Gyro	oscope	e: angular ve	eloci	ty an	d acc	celeration, g	yroscopic t	orque/ couple;	gyroscopic	effect on				
	nava	l ships	s; stability o	f tw	o and	l fou	r wheel veh	icles, rigid	disc at an ang	le fixed to a	a rotating				
III	shaft	•		P		1	\sim	1 1		1	1 1.	14			
	Dyna	amom	eter: types	S, P	rony	bra	ke, rope b	rake and	band brake	dynamomet	ers, belt				
	Rala	ncing	• Balancing	of P	, tors.	ng C	omponents	static bala	nce dynamic l	halance hal	ancing of				
	rotati	ing m	asses two r	lane	hale	ing C	ourponents.	static vala and analy	tical methods	balancing	of rotors				

IV	rotating masses, two plane balancing, graphical and analytical methods, balancing of rotors, balancing machines, field balancing. Balancing of Reciprocating Parts: Balancing of single	14
	cylinder engine, balancing of multi cylinder; inline, radial and V type engines, firing order.	
V	Vibration: types, One dimensional longitudinal, Transverse, and torsional vibrations, Natural frequency, Free and forced vibration of single degree of freedom systems; effect of damping; Effect of damping on vibrations, Different types of damping. Forced vibration, Forces and displacement, Transmissibility, Vibration Isolation, vibration absorber, Whirling of shafts with single rotor.	14

Text Book/References Books/ Websites:

1. Rattan SS; Theory of machines; TMH.

- 2. Ambekar AG; Mechanism and Machine Theory; PHI.
- 3. Sharma CS; Purohit K; Theory of Mechanism and Machines; PHI.
- 4. Thomas Bevan; Theory of Machines; Pearson/ CBS PUB Delhi.
- 5. Ghosh and Mallick, theory of machine & mechanism.
- 6. T. V. Ramachandra; Management of Municipal Solid Waste; TERI press.

Programme: B. Tech. (Mechanical Engineering)

Semester –V

Suggested List of Laboratory Practical (Expandable):

- 1 Analytical determination of velocity and acceleration in simple mechanism using Roven's M.
- 2 To study all inversions of four-bar mechanisms using models
- 3 Determination of velocity and acceleration in above using method of graphical differentiation
- 4 To perform experiment on Watt governor to prepare performance characteristic curves, and to find stability & sensitivity.
- 5 To perform experiment on Porter Governor to prepare performance characteristic curves, and to find stability & sensitivity.
- 6 To perform experiment on Hartnell Governor to prepare performance characteristic curves, and to find stability & sensitivity.
- 7 To perform static & dynamic balancing on static balancing machine apparatus.
- 8 To study of various types of dynamometer
- 9 Study of universal gyroscope
- 10 To find out frequency of damped free vibration and rate of decay of vibration-amplitude in the system To observe the phenomenon of 'whirl' in a horizontal light shaft and to determine the critical speed of the shaft.

<u>PEOPLE'S UNIVERSITY, BHOPAL</u> (Applicable for Admitted from Academic Session 2019-20 onwards)

Programme: B. Tech. (Mechanical Engineering)

Subject Code	Subject Title	Credit			Theory			Practical		
MET 1504	Heat and Mass Transfer	L	Т	Р	External	Internal	Total (100)	External	Internal (15)	Total (50)
ME 1-1504		3	1	1	(70)	(30)	Min: 40	(35)		Min: 20
							(D Grade)			(D Grade)
Duration	Duration of Theory (Externals): 3 Hours									
		1	20		Best of Tw	o Mid Sem	ester Test –	Assignm	ent/Quiz/A	ttendance
Ineory	Internal- Max Mar	KS:	30		Max Marks	s: 20		Max. Marks: 10		
Practical Internal Max Marks: 15					Lab work & Sessional –			Assignment / Quiz/Attendance		
				Max Marks	s: 10		Max. Marks: 05			
Pre-Requisit	Pre-Requisite Student should have knowledge of Production Engineering									

Pre-Requisite	Student should have knowledge of Production Engineering.						
Course Outcome	1. To understand the manufacturing methods, measurements, automation and quality control.						
	2. To get the knowledge of CNC operations and G-code, M-code program.						
	3. Classify different plastic molding processes, Extrusion of Plastic and Thermoforming.						

Unit	Contents (Theory)	Marks Weightage
I	Basic Concepts: Modes of heat transfer, Fourier's law, Newton's law, Stefan Boltzmann law; thermal resistance and conductance, analogy between flow of heat and electricity, combined heat transfer process; Conduction: Fourier heat conduction equation, its form in rectangular, cylindrical and spherical coordinates, thermal diffusivity, linear one dimensional steady state conduction through a slab, tubes, spherical shells and composite structures, electrical analogies, critical-insulation-thickness for pipes, effect of variable thermal conductivity. Numerical.	14
п	Extended surfaces (fins): Heat transfer from a straight and annular fin (plate) for a uniform cross section; error in measurement of temperature in a thermometer well, fin efficiency, fin effectiveness, applications; Unsteady heat conduction: Transient and periodic conduction, heating and cooling of bodies with known temperatures distribution, systems with infinite thermal conductivity, Response of thermocouples.	14
ш	Convection: Introduction, free and forced convection; principle of dimensional analysis, Buckingham 'pie' theorem, application of dimensional analysis of free and forced convection, empirical correlations for laminar and turbulent flow over flat plate and tubular geometry; calculation of convective heat transfer coefficient using data book.	14
IV	 Thermal radiation: Nature of radiation, emissive power, absorption, transmission, reflection and emission of radiation, Planck's distribution law, radiation from real surfaces; radiation heat exchange between black and gray surfaces, shape factor, analogical electrical network, radiation shields. Boiling and condensation: Film wise and drop wise condensation; Nusselt theory for film wise condensation on a vertical plate and its modification for horizontal tubes; boiling heat transfer phenomenon, regimes of boiling, boiling correlations. 	14
v	 Heat exchangers: Types- parallel flow, counter flow; evaporator and condensers, overall heat transfers coefficient, fouling factors, log-mean temperature difference (LMTD), method of heat exchanger analysis, effectiveness of heat exchanger, NTU method; Mass transfer: Fick's law, equi-molar diffusion, diffusion coefficient, analogy with heat transfer, diffusion of vapour in a stationary medium. 	14

Programme: B. Tech. (Mechanical Engineering)

Text Book/References Books/ Websites:

- 1. S.P. Sukhatme ; Heat Transfer; Tata McGraw Hill
- 2. J.P. Holman ; Heat Transfer; Tata McGraw Hill
- 3. K. Kannan ; Heat & Mass Transfer; Anuradha Agencies
- 4. Yunus A. Cengel ; Heat Transfer: A Practical Approach; McGraw Hill
- 5. Ghosh, Dastudhar ; Heat Transfer; Oxford University Press
- 6. D.S. Kumar; Heat & Mass Transfer; S.K. Kataria & Sons.

Suggested List of Laboratory Experiments :- (Expandable):

- 1 To determine Thermal Conductivity of given metal rod
- 2 To study the transfer phenomenon and compare the performance of heat pipe with two geometrical similar pipes of copper and stainless steels
- 3 To measure the Emissivity of the test surface in comparison to black surface
- 4 To determine Forced convention heat transfer coefficient for flow through the given horizontal tube
- 5 To visualized the pool boiling over the heater wire in different regions up to the critical heat flux point at which the wire melts
- 6 To calibrate a thermocouple and find the corresponding curve-fit correlation
- 7 To determine the Stefan Boltzmann constant of radiant heat transfer
- 8 To determine the natural convection heat transfer coefficient for the vertical tube exposed to atmospheric air
- 9 To determine the Temperature difference (LMTD) and overall co-efficient of given Heat Exchanger
- 10 To determine Free convection from extended surfaces

103000

<u>PEOPLE'S UNIVERSITY, BHOPAL</u> (Applicable for Admitted from Academic Session 2019-20 onwards)

Programme: **B. Tech. (Mechanical Engineering)**

Semester –V

Subject Code	Sub Ti	ject tle	Credit				Theory			Practical		
MET 1505 TI		Turbo		Т	Р	External	Internal	Total (100)	External	Internal	Total (50)	
WIE 1-1505	Mach	inery	ry 3 1		1	(70)	(30)	Min: 40 (D Grade)	(35)	(15)	Min: 20 (D Grade)	
Duration	n of The	eory (Ex	xtern	als):	3 Ho	urs						
Best of Two Mid Semes								mester Test	– Assignr	nent/Quiz/A	ttendance-	
Theory Internal- Max Marks: 30					Ū	Max Mar	:ks: 20		Max. M	Max. Marks: 10		
Practical Internal Max Marks: 15						Lab work	Lab work & Sessional – Assignment / Quiz/Attendance					
						Max Mar	·ks: 10		Max. M	Max. Marks: 05		
Pre-Requis	ite	Basic k	now	ledge	of fl	uid kinemati	cs and dyna	amics.	•			
	1. Ability to understand the working principles of turbomachines and apply it to various types of machines											
Course Out	come	2. De condit	termi ions	ine th	e vel	ocity triangle	es in turbor	nachinery sta	ges operating	at design a	nd offdesign	
		3. Determine the off-design behavior of turbines and compressors and relate it to chathe velocity triangles										

Unit	Contents	Marks Weightage
Ι	Introduction to Turbo Machinery : Basic principles, Classification, Impulse & Reaction type, Fundamental equations, Euler's equation, Impulse momentum principle, Force exerted by the jet on stationary flat and curved plate, degree of reaction. Fluid system: Hydraulic accumulator, Hydraulic intensifier, Hydraulic Press, Hydraulic crane, Hydraulic lift, Hydraulic Ram, Hydraulic coupling, Hydraulic torque converter, Air lift pump.	14
Π	Hydraulic Turbines: Classification layout of hydraulic power plant, Different efficiencies, velocity triangles, design parameters, Maximum efficiency of, Pelton turbine, Francis turbine, Kaplan and Propeller turbines, Draft tubes- Types and functions, characteristic curve of hydraulic turbines, specific speed, governing of turbines. Numerical.	14
III	Steam Turbine : Principle and working of impulse and reaction turbines, pressure and velocity compounding. Velocity triangles for various types, stage efficiency, diagram efficiency, steam speed to blade speed ratio for optimum performance, losses in steam turbines, performance at part loads, governing of turbines. Numerical.	14
IV	Centrifugal Pumps: Classification and parts of centrifugal pump, different heads and efficiencies of centrifugal pump, Minimum speed for starting the flow, Maximum suction lift, Net positive suction head, characteristic curve of centrifugal pump, Cavitations, Need for priming, Numerical.	14
v	Compressors: Centrifugal Compressors: Stage velocity triangles, slip factor, power input factor, Stage work, Pressure developed, stage efficiency and surging and problems, Axial flow Compressors: Expression for pressure ratio developed in a stage, work done factor, efficiencies & stalling. Numerical.	14

Text Book/References Books/ Websites:

- 1. B.S Massey; Mechanics of Fluid; English Language Book Society (U.K.)
- 2. Jagdish Lal; Hydraulic Machines; S.K. Kataria & Sons
- 3. S.K. Som & G. Biswas ; Introduction to Fluid Mechanics and Fluid Machines TMH
- 4. R. K. Rajput; A text of Fluid Mechanic; S. Chand & Company Ltd.

Programme: **B. Tech. (Mechanical Engineering)**

Semester –V

Suggested List Of Laboratory Experiments (Expandable):-

- 1 To study the constructional details of a Pelton turbine and draw its fluid flow circuit.
- 2 To draw the following performance characteristics of Pelton turbine-constant head, constant speed and constant efficiency curves.
- 3 To study the constructional details of a Francis turbine and draw its fluid flow circuit.
- **4** To draw the constant head, constant speed and constant efficiency performance characteristics of Francis turbine.
- 5 To study the construction details of a Kaplan turbine and draw its fluid flow circuit.
- **6** To draw the constant head, speed and efficiency curves for a Kaplan turbine.
- 7 To study the constructional details of a Centrifugal Pump and draw its characteristic curves.
- 8 To study the constructional details of a Reciprocating Pump and draw its characteristics curves.
- 9 To study the construction details of a Gear oil pump and its performance curves.
- 10 To study the constructional details of a Hydraulic Ram and determine its various efficiencies.
- 11 To study the constructional details of a Centrifugal compressor.

in the second se

12 To study the model of Hydro power plant and draw its layout.

<u>PEOPLE'S UNIVERSITY, BHOPAL</u> (Applicable for Admitted from Academic Session 2019-20 onwards)

Programme: B. Tech. (Mechanical Engineering)

Semester –V

Subject Code	Subject Title		Credit			Theory				Practical		
MET 1504	Mechanical		LTI		Р	External	Internal	Total	External	Internal	Total (50)	
ME 1-1500	Softw	vare Lab-II	-	-	1	(Nil)	(Nil)	Nil	(35)	(15)	Min: 20	
Duration	Duration of Theory (Externals): Nil											
Theory	Intonno	May May	1 1 1	1:1		Best of Two	Mid Seme	ster Test	– Assignr	nent/Quiz/A	ttendance-	
I neory	merna	a- max mar	KS: I	NII		Max Marks	: Nil		Max. M	Max. Marks: Nil		
Practical Internal Max Marks: 15						Lab work & Sessional –			Assign	Assignment / Quiz/Attendance-		
						Max Marks: 10			Max. M	Max. Marks: 05		
Pre-Requisite Nil										\sim		

Pre-Requisite	NII
Course Outcome	1. Ability to draw the various components using software.
	2. Abililty to understand the knowledge of fluid mechanics using software.
	3. Study the various machines parts and its applications.

Unit	Contents (Theory)	Marks
		Weightage
	Introduction: Introduction to MATLAB, Study of MATLAB programming environment,	
Ι	Modeling, Design and development of Program. The following contents beginning with a	
	broad overview of MATLAB.	
п	Basic MATLAB: The MATLAB Workspace, Working with Vectors, Working with Matrices,	
11	Solving Systems of Linear Equations, Working with Loops, Working with Plots.	50
	Statics and Structures: Computing reaction forces acting on a truss, Computing reaction	50
	internal shear force and bending moment	
ш	Fluid Mechanics: Solving for the friction coefficient, Computing the head loss for flow	
	through a pipe.	
	Heat Transfer: Analyzing the ice build-up on a body of fluid.	
	Dynamics: Modeling a damped spring-mass system using Simulink, The logistic equation.	

Text Book/References Books/ Websites:

http://www.colorado.edu/MCEN/programs/undergraduate/matlab_tutorials/

Suggested List of Laboratory Experiments (Expandable):-

Programs to be performed based on the topics contained in the syllabus.

<u>PEOPLE'S UNIVERSITY, BHOPAL</u> (Applicable for Admitted from Academic Session 2019-20 onwards)

Programme: B. Tech. (Mechanical Engineering)

Semester –V

Subject Code	Subject Title	ct Title Credit				Theory		Practical			
MET 1507	Industrial			Р	External	Internal	Total	External	Internal	Total (100)	
WIE 1-1507	Training-I	_	_	2	(Nil)	(Nil)	Nil	(70)	(30)	Min: 40	
				2			111			(D Grade)	
Duration of Theory (Externals): Nil											
Theory Inte	rnal- Max Mark	s: Ni	1	В	est of Two N	Aid Semester	r Test –	Assignment/Quiz/Attendance			
				Ν	lax Marks: N	Jil		Max. Marks: Nil			
Practical Int	ternal Max Mar	ks: 3	0	L	ab work & S	essional –		Assignment / Quiz/ Attendance			
					lax Marks: 2	0		Max. Marks: 10			
Pre-Requis	ite Fundame	ental	Engiı	neerii	ng concepts o	of concern di	iscipline.				
	1. Enric	1. Enrich their practical learning and they will be better equipped to integrate the practical									

	1.	Enrich their practical learning and they will be better equipped to integrate the practical
Course Outcome	2.	experiences with the classroom learning process. Interact with real World of Work and should try to learn as much as possible from real life experiences by involving with industry staff.

Unit	Contents (Theory)	Marks Weightage
	The objective of undertaking industrial training is to provide work experience so that student's	
	engineering knowledge is enhanced and employment prospects are improved. Industrial	
	training of the students is essential to bridge the wide gap between the classroom and industrial	
	environment.	
	As a part of B. Tech. curriculum, MET-1507, Industrial Training -I is a Practical course, which	
	the students should undergo in reputed Private / Public Sector / Government organization /	
	companies as industrial training of minimum two weeks to be undergone by the student in the	
	semester break after IV semester theory examinations.	
	Training period : Minimum of two weeks or 15 (Fifteen) Days.	
	Evaluation: Fifth semester	100
	Companies / Areas covered: Any field related to concern branch / discipline of Engineering.	
	Grading: As per Scheme.	
	Note: Presentation will take place the following week after you complete your training. The	
	presentation is evaluation by your class in charge. Report must be submitted during power	
	point presentation. The report evaluation is done by your class in charge. A Viva voce	
	comprising comprehensive questions based on your presentation and training undergone.	
	Etiquette: Dress properly, Behave well, Portray good image as a university student, Be	
	punctual, Observe work ethics, Concern for safety, Be professional.	

Text Book/References Books/ Websites: Nil Suggested List of Laboratory Experiments :- (Expandable): Nil

<u>PEOPLE'S UNIVERSITY, BHOPAL</u> (Applicable for Admitted from Academic Session 2019-20 onwards)

Programme: B. Tech. (Mechanical Engineering)

Semester –V

Subject Code	Sut	ubject Title		Credit		Theory				Practical		
DT 1509		Indian	LT		Р	External	Internal	Total (50)	External	Internal	Total	
D1-1508	Co	onstitution	2	-	-	(35)	(15)	Min: 20 (D Grade)	Nil	Nil	Nil	
Duration of Theory (Externals): 2 Hours												
Theory Internal- Max Marks: 15					Best	of Two Mid	Semester Te	est – A	Assignment/Quiz/Attendance			
						Max Marks: Nil Max. Marks: 15						
Practical Internal Max Marks: Nil					Lab	work & Sess	ional –	Assignment / Quiz/Attendance				
					Max Marks: Nil Max. Marks: Nil							
Pre-Requis	site	Nil										
Course Outcome 1. Understand			and t	d the functions of the Indian government.								
Course Ou	itcome	2. Un	derst	and a	und al	oide the rules	s of the India	an constitutio	n			
										N	larks	

Unit	Contents (Theory)	Marks Weightage					
	Introduction: Constitution' meaning of the term; Indian Constitution: Sources and						
Ι	constitutional history; Features: Citizenship; Preamble; Fundamental Rights and Duties;	07					
	Directive Principles of State Policy.						
	Union Government and its Administration: Structure of the Indian Union: Federalism;						
II	Centre- State relationship; President: Role; power and position; PM and Council of ministers;	07					
	Cabinet and Central Secretariat; Lok Sabha; Rajya Sabha.						
ш	State Government and its Administration: Governor: Role and Position; CM and Council of	07					
111	ministers; State Secretariat: Organization; Structure and Functions.	07					
	Local Administration: District's Administration head: Role and Importance; Municipalities:						
	Introduction; Mayor and role of Elected Representative; CEO of Municipal Corporation;						
IV	Pachayati raj: Introduction; PRI: Zila Pachayat; Elected officials and their roles; CEO Zila	07					
	Pachayat: Position and role; Block level: Organizational Hierarchy (Different departments);						
	Village level: Role of Elected and Appointed officials; Importance of grass root democracy.						
	Election Commission: Role and Functioning; Chief Election Commissioner and Election						
V	Commissioners; State Election Commission: Role and Functioning; Institute and Bodies for the						
	welfare of SC/ST/OBC and women.						

Mandatory (Non Credit) subject according to AICTE. Non University Examination; End Sem marks not to be included in total marks and credit. Students must pass in this subject.

Text Book/References Books/ Websites:

- 1. Indian Polity by Laxmikanth.
- 2. 'Indian Administration' by Subhash Kashyap.
- 3. 'Indian Constitution' by D.D. Basu.
- 4. 'Indian Administration' by Avasti and Avasti.

Suggested List of Laboratory Experiments :- (Expandable): Nil