(Applicable for Admitted from Academic Session 2019-20 onwards)

Programme: **Diploma in Engineering** Semester –V

Subject Code	Subject Title	C	Credit		Theory			Practical		
	Management	L	T	P		T41	Total (100)		T 4 1	Total
DCS15011	Information System	3	1	-	External (70)	Internal (30)	Min: 40 (D Grade)	External (Nil)	Internal (Nil)	Nil

Duration of Theory (Externals): 3 Hours

Theory Internal- Max Marks: 30	Best of Two Mid Semester Test Max Marks: 15	Assignment/Quiz/Attendance Max. Marks: 15
Practical Internal Max Marks: Nil	Lab work & Sessional – Max Marks: Nil	Assignment / Quiz/ Attendance Max, Marks: Nil

Pre-Requisite	Basic principles and theory knowledge of Businesses.
Course Outcome	1. Develop project goals and objectives for an Information Systems problem.
	2. Identify steps, sequencing and resources needed to complete a project.
	3. Manage a team to successful project or subproject completion.

Unit	Contents (Theory)	Marks Weightage
I	Overview Of Business: Types of Business, Service, Manufacturing, Trade, Industrial sectors. Introduction to - Engineering industry, Process industry, Textile industry, Chemical industry, Agro industry, Globalization- Introduction, Advantages & disadvantages, Intellectual Property Rights (I.P.R.).	14
II	Management Process: Management, Evolution, Various definitions, Concept of management, Levels of management, Administration & management, Principles of Management (14 principles of Henry Fayol), Functions of Management, Planning, Organizing, Directing, Controlling.	14
III	Organizational Management: Organization - Definition, Steps in organization, Types of organization-Line, Line & staff, Functional, Project, Authority & Responsibility, Span of Control, Forms of ownership- Proprietorships, Partnership, Joint stock, Co-operative Society, Govt. Sector.	14
IV	Financial Management : Financial Management- Objectives & Functions, Capital Generation & Management, Types of Capitals, Sources of raising Capital, Budgets and accounts-Types of Budgets, Production Budget (including Variance Report), Labor Budget, Introduction to Profit & Loss Account (only concepts), Balance Sheet Introduction to – Excise Tax, Service Tax, Income Tax, VAT, Custom Duty.	14
V	Materials Management: Inventory Management (No Numerical)-Meaning & Objectives, ABC Analysis, Economic Order Quantity - Introduction & Graphical Representation, Purchase Procedure-Objects of Purchasing, Functions of Purchase Dept., Steps in Purchasing, Modern Techniques of Material Management-Introductory treatment to JIT / SAP / ERP. Project Management-Introduction & Meaning, Introduction to CPM & PERT Technique	14

School of Research and Technology

(Applicable for Admitted from Academic Session 2019-20 onwards)

Programme: **Diploma in Engineering** Semester –V

Text Book/References Books/ Websites:

- 1. Dr. O.P. Khanna; Industrial Engg & Management; Dhanpal Rai & sons New Delhi.
- 2. Dr. S.C. Saxena, Sahitya Bhavan ;Business Administration & Management ;Agra Publication.
- 3. Rustom S. Davar; Industrial Management; Khanna Publication.

Suggested List of Laboratory Experiments :- (Expandable): Nil

School of Research and Technology

(Applicable for Admitted from Academic Session 2019-20 onwards)

Programme: **Diploma in Engineering** Semester –V

Subject Code	Subject Title	(Cred	it	Theory			Practical		
	CI I	L	Т	P		T 4	Total (100)		T / 1	Total
DCS15012	Cloud computing	3	1	-	External (70)	Internal (30)	Min: 40 (D Grade)	External (Nil)	Internal (Nil)	Nil

Duration of Theory (Externals): 3 Hours

Theory Internal- Max Marks: 30	Best of Two Mid Semester Test – Max Marks: 15	Assignment/Quiz/Attendance Max. Marks: 15
Practical Internal Max Marks: Nil	Lab work & Sessional – Max Marks: Nil	Assignment/Quiz/Attendance Max. Marks: Nil

Pre-Requisite	Student should have basic knowledge of network.
Course Outcome	1. Explain the economics of outsourcing IT to the cloud
	2. Analyze the performance, scalability, and availability of the underlying cloud technologies and software.
	3. Solve a real-world problem using cloud computing through group collaboration.

Unit	Contents (Theory)	Marks
T	Introduction: Introduction to Cloud Computing – Definition of Cloud – Evolution of Cloud	Weightage 14
_	Computing – Underlying Principles of Parallel and Distributed Computing – Cloud	1.
	Characteristics.	
II	Foundations: Migrating into a Cloud, Enriching the 'Integration as a Service' Paradigm for the	14
	Cloud Era. The Enterprise Cloud Computing Paradigm.	
III	Systems Modeling, Clustering and Virtualization: Distributed System Models and Enabling	14
	Technologies. Computer Clusters for Scalable Parallel Computing. Virtual Machines and	
	Virtualization of Clusters and Data centers.	
IV	Cloud Infrastructure: 'Architectural Design of Compute and Storage Clouds – Layered Cloud	14
	Architecture Development – Design Challenges - Inter Cloud Resource Management – Resource	
	Provisioning and Platform Deployment – Global Exchange of Cloud Resources.	
V	Governance and Case Studies: Organizational Readiness and Change management in the Cloud	14
	age. Data Security in the Cloud, Legal issues in Cloud computing.	

Text Book/References Books/ Websites:

- 1. Anthony T.Velte. Toby J.VeFte; Robert Elsenpeter; Cloud Computing: A Practical Approach; Tata McGraw Hill. rp2Oll.
- 2. Gautam Shroif Enterprise; Cloud Computing; Cambridge University Press. 2010.
- 3. M.N.Rao; Cloud Computing; PHI Learning

4

Suggested List of Laboratory Experiments :- (Expandable): Nil

School of Research and Technology

(Applicable for Admitted from Academic Session 2019-20 onwards)

Programme: **Diploma in Engineering** Semester –V

Subject Code	Subject Title	Cr	edit		Theory			Practical		
DCS15013	Software	L	Т	P	Entomol	Internal	Total (100)	External	Internal	Total
	Quality And Testing	3	1	-	- External (30) Min: 40 (D Grade) (Nil)	(Nil)	Nil			

Duration of Theory (Externals): 3 Hours

Theory Internal- Max Marks: 30	Best of Two Mid Semester Test – Max Marks: 15	Assignment/Quiz/Attendance Max. Marks: 15
Practical Internal Max Marks: Nil	Lab work & Sessional – Max Marks: Nil	Assignment /Quiz/Attendance Max. Marks: Nil

Pre-Requisite	Basic software engineering models.
	1.To learn about software testing tools
Course Outcome	2.To learn fundamentals of software testing
	3.To gain skills of improving software quality.

Unit	Contents (Theory)	Marks Weightage
I	Introduction to software system and testing : Basic Testing Vocabulary, Quality Assurance versus Quality Control, The Cost of Quality, Software Quality Factors, Testing-its roles and responsibilities, principles.	14
II	Testing Techniques: Structural versus Functional Technique Categories, Verification versus Validation, and Static versus Dynamic Testing, and Examples of Specific Testing Techniques. Manual And Automation Testing: Basics of Manual and Automation Testing, Factors for choosing particular tool, Overview of major functional automation tool.	14
III	Software Development Life Cycle: SDLC Phases, SDLC Models Software Testing Methodologies: White Box and Black Box testing	14
IV	Test administration : Test Planning, Customization of Test Process, Budgeting, Scheduling, Test Responsibility Matrix, Testing etrics: Test Management, Quality Assessment metrics, Process capability matrices.	14
V	Levels of Testing : Functional and Non Functional Testing: Test Planning, Test cases design, Test Execution,	14

Text Book/References Books/ Websites

- 1. Ron Patton; Software Testing; 2nd Edition, 200.5
- 2. Glenford J. Myers, Corey Sandler, Tom Badgett.; The Art of Software Testing, 3rd Edition.
- 3. Paul C. Jorgensen; Software Testing: A Craftsman's Approach, Fourth Edition.

Suggested List of Laboratory Experiments :- (Expandable): Nil

School of Research and Technology

(Applicable for Admitted from Academic Session 2019-20 onwards)

Programme: **Diploma in Engineering** Semester –V

Subject Code	Subject Title	(Credi	t		Theory			Practi	cal
	Computor	L	Т	P		Intonnal	Total (100)			Total
DCS1502	Computer Networks	3	1	1	External (70)	Internal (30)	Min: 40 (D Grade)	External (Nil)	Internal (Nil)	Nil

Theory Internal- Max Marks: 30	Best of Two Mid Semester Test – Max Marks: 15	Assignment/Quiz/Attendance Max. Marks: 15
Practical Internal max marks : Nil	Lab Work & Sessional Max Marks: Nil	Assignment / Quiz / Attendance Max Marks: Nil

Duration of Theory (Externals): 3 Hours

	- 11001 (
Pre-Requisite	Student should have basic knowledge of computer network.
Course Outcome	1. To be familiar with network tools and network programming
	2. To master the terminology and concepts of the OSI reference model and the TCP-IP reference model.
	3. To master the concepts of protocols, network interfaces, and design/performance issues in local area networks and wide area networks.
	local area networks and wide area networks.

Unit	Contents (Theory)	Marks Weightage
I	Basic Network Concepts: INTRODUCTION - Human Networks, Computer Networks, Network Plan. Server, client, workstation and Hosts Identifying the Benefits and applications. Types of Computer Networks: LAN, MAN, WAN Types OF Computer architecture: Peer-to-Peer, Client Server and Distributed.	14
II	Network Topologies and Networking Devices: Type of Topology - Bus Topology, Ring Topology, Star Topology, Mesh Topology, Tree Topology, Hybrid Topology. Network Control Devices -Hubs, Switches, Routers, Bridges, Repeaters, Gateways, Modems.	14
III	Transmission Media & Switching: Guided Media -Twisted Pair -UPT, STP, Coaxial Cable, and Optical Fiber - Advantages and Disadvantages of optical fiber and uses. Un-Guided Media: Wireless Communication — Communication Band, Microwave Communication, Satellite Communication —. Switching: Circuit Switching, Packet Switching and Message Switching. Mode of transmission: parallel and serial, synchronous and asynchronous, simplex half duplex full duplex, Multiplexing, TDM, FDM.	14
IV	Network Reference Model, Protocol and Services: Introduction of Layered architecture Peer to Peer Processes Interfaces between layered Protocols .Organization of the layered of OSI model (Function of each layered and Protocol are used) TCP/IP Reference Model, Comparison of the OSI and TCP/IP reference models.	14
V	TCP/IP Suites: IP addressing-IP address Classes, Classless IP addressing, Subletting, Super netting, Masking .TCP/IP Protocols – HTTP, SMTP, FTP, UDP, ARP, ICMP, POP3, SNMP.	14

Text Book/References Books/ Websites

School of Research and Technology

(Applicable for Admitted from Academic Session 2019-20 onwards)

Programme: **Diploma in Engineering** Semester –V

- 1. Richard A. McMohan; Introduction to Networking.
- 2. Achyut S. Godbole; Data Communication and Networking .
- 3. Behrouz A Forouzan; Data and Computer communication.

Suggested List of Laboratory Experiments :- (Expandable): Nil

School of Research and Technology

PEOPLE'S UNIVERSITY, BHOPAL
(Applicable for Admitted from Academic Session 2019-20 onwards)

Programme: **Diploma in Engineering** Semester -V

Subject Code	Subject Title	(Cred	it		Theory			Practica	ıl
	Computer	L	T	P		T 4	Total (100)	E 4		Total (50)
DCS1503	Graphics & Multimedia	3	1	1	External (70)	Internal (30)	Min: 40 (D Grade)	External (35)	Internal (15)	Min: 20 (D Grade)

Duration of Theory (Externals): 3 Hours

Theory Internal- Max Marks: 30	Best of Two Mid Semester Test – Max Marks: 15	Assignment/Quiz/Attendance Max. Marks: 15
Practical Internal Max Marks: 15	Lab Work & Sessional Max- Marks:10	Assignment / Quiz/ Attendance Max Marks: 05

Pre-Requisite	Nil
Course Outcome	1. This course will introduce students to all aspects of computer graphics including hardware,
	software and applications.
	2. Understand a typical graphics pipeline.
	3. Students will gain experience using a graphics application programming interface

Unit	Contents (Theory)	Marks weightage
I	Introduction to Computer Graphics : Pixel, Frame ,Buffer Raster ,Display devices –	
	Random Scan, Raster Scan Monitor, Color CRT Monitor, DVST and Plasma Panel	14
	Basic Adapter Cards- MCA, CGA, EGA, VGA.	
II	Graphics Primitive: Algorithms for Line Drawing Like DDA, Brenham's Circle	
	Drawing: Mid-Point and Brenham's Algorithm Polygon Drawing: Boundary -Fill and	14
	Flood Fill Algorithm.	
III	2D and 3D Transformation: Translation, Rotation, Scaling, Reflection,, Homogeneous	
	co-ordinate system, Matrices transformation, Composite transformation,	
	Windowing and Clipping: View Port ,Line Clipping, Polygon Clipping, Window &	14
	View Port Transformation,	
	Curve Generation: Bezier and B-spline Method.	
IV	Basic Illumination & Color Models: Reflection, Specular Reflection, Ray tracing, color	1.4
	models like RGB, YIQ, CMY, HSV.	14
V	Multimedia and Animation: An Introduction, Multimedia hardware, Multimedia System	
	Architecture. Data & File Format standards. Like - RTF, TIFF, MIDI, JPEG, DIB,	1./
	MPEG, Audio: digital audio, Compression. Animation: Principal of animation, 3D	14
	animation File Formats Morphing & Compression Technique	

(Applicable for Admitted from Academic Session 2019-20 onwards)

Programme: **Diploma in Engineering** Semester –V

Text Book/References Books/ Websites

- 1. Donald Hearn and M.P. Becker; Computer Graphics; Pearson Pub.
- 2. PradeepK.Bhatia; Computer Graphics; I.K International Publishing House PVT.LTD
- 3. Sinha and Udai ;Computer Graphics; Tata McGraw Hill

Suggested List of Laboratory Experiments :- (Expandable):

- 1. Study of Fundamental Graphics Functions.
- 2 Implement Line generation using DDA algorithm
- 3. Implement Line using Bresenham's line generation Algorithm.
- 4. Generate Circle using Bresenham's Algorithm
- 5. Draw a Circle using Mid-Point Algorithm.
- 6. Draw a Polygon using Flood Fill Algorithm.
- 7. Perform translation, rotation scaling on 2-D Transformation.
- 8. Implement Fill Polygon using Boundary Fill Algorithm.
- 9. Implement Draw Bezeir Curve.
- 10. Implement Draw B-Spline Curve.

(Applicable for Admitted from Academic Session 2019-20 onwards)

Programme: **Diploma in Engineering** Semester –V

Subject Code	Subject Title	(Cred	it		Theory			Practical	
	Analysis &	L	Т	P		T41	Total (100)			Total (50)
DCS1504	Design of Algorithms	3	1	1	External (70)	Internal (30)	Min: 40 (D Grade)	External (35)	Internal (15)	Min: 20 (D Grade)

Duration of Theory (Externals): 3 Hours

Theory Internal- Max Marks: 30	Best of Two Mid Semester Test – Max Marks: 15	Assignment/Quiz/Attendance Max. Marks: 15
Practical Internal Max Marks: 15	Lab work & Sessional – Max Marks: 10	Assignment / Quiz/ Attendance Max. Marks: 05

Pre-Requisite	Student should have basic knowledge of data structure.
Course Outcome	1. Analyze worst-case running times of algorithms using asymptotic analysis.
	2. Understand basic data types and describe the greedy paradigm.
	3. Describe the dynamic-programming paradigm and basic concepts of algorithm

Unit	Contents (Theory)	Marks weightage
Ι	Basics of Algorithms and data types: - Algorithms, Designing algorithms, analyzing algorithms, asymptotic notations, Divide and conquer strategy ,Stassen's matrix multiplication., sorting(Merge sort, quick sort) and searching(Binary search).	14
II	Greedy Programming: -Study of Greedy strategy, examples of greedy method like optimal merge patterns, Huffman coding, minimum spanning trees, knapsack problem, job sequencing with deadlines, single source shortest path algorithm	14
III	Dynamic Programming:- Concept of dynamic programming examples such as 0/1 knapsack, multistage graph, Floyd War shall algorithm, travelling salesman problem	14
IV	Backtracking: -Backtracking concept and its examples like 8 queen's problem, Hamiltonian cycle, Graph coloring problem etc. Introduction to branch & bound method, examples of branch and bound method like traveling salesman problem	14
V	NP Complete Problem: Introduction to NP Problem, Polynomial-time, NP-Completeness, prim's and Kruskal's algorithm.	14

Text Book/References Books/ Websites:

- 1. Horowitz & Sahani; Analysis & Design of Algorithm.
- 2. V.V.Muniswamy; Design and Analysis of Algorith; K International Publishing House PVT. LTD, New Delhi.
- 3. Sahani Design and Analysis of Algorithm, Scitech Publication PVT.LTD. Chennai.
- 4 Core men Thomas, Leiserson CE, Rivets RL; Introduction to Algorithms, PHI.

School of Research and Technology

(Applicable for Admitted from Academic Session 2019-20 onwards)

Programme: **Diploma in Engineering** Semester –V

Suggested List of Laboratory Experiments :- (Expandable):

- 1. Program for Recursive Binary & Linear Search.
- 2. Program for Heap Sort.
- 3. Program for Merge Sort.
- 4. Program for Selection Sort.
- 5. Program for Insertion Sort.
- 6. Program for Quick Sort.
- 7. Study of NP-Complete theory.
- 8. Write a program for traveling salesman problem
- 9. Write a program for Stassen's Matrix Multiplication.
- 10. Write a program for minimum spanning trees using Prim's algorithm and kruskal's algorithm

(Applicable for Admitted from Academic Session 2019-20 onwards)

Programme: **Diploma in Engineering** Semester –V

Subject Code	Subject Title	Credit			Theory				Practical	
DCG1505	Java Programming	L	Т	P	E-41	Internal	Total (100)	E-41		Total (50)
DCS1505		3	1	1	External (70)	(30)	Min: 40 (D Grade)	External (35)	Internal (15)	Min: 20 (D Grade)

Duration of Theory (Externals): 3 Hours

Theory Internal- Max Marks: 30	Best of Two Mid Semester Test – Max Marks: 15	Assignment/Quiz/Attendance Max. Marks: 15
Practical Internal Max Marks: 15	Lab work & Sessional – Max Marks: 10	Assignment \ Quiz/ Attendance Max. Marks: 05

Pre-Requisite	Student should have basic knowledge of OOP'S concepts.
Course Outcome	1. Student should be able to Use an integrated development environment to write, compile, run, and test simple object-oriented Java programs.
	2. Student should be able to Read and make elementary modifications to Java programs that solve real-world problems.
	3. Student should be able to Validate input in a Java program.

Unit	Contents (Theory)	Marks				
		weightage				
I	Introduction to Java: Fundamentals of Object Oriented Programming Object and					
	Classes, Data abstraction and encapsulation, Inheritance, Polymorphism, Dynamic					
	Binding, Java Features, Compiled and Interpreted, Platform independent and portable,					
	Object oriented Distributed, Multithreaded and interactive, High performance Constant,					
	Variables and Data Types Constant, Data Types, Scope of variable, Symbolic Constant,					
	Type casting, Standard default values Operator and Expression, Arithmetic Operators,					
	Relational Operators, Logical Operators, Assignment Operator Increment and Decrement					
	Operator, Conditional Operator, Bit wise Operator, Special Operator					
II	Decision making and Branching, Decision making with if statement, Simple if					
	statement, if else statement, The else if ladder, The switch statement, The? : Operator	1.4				
	Decision making and Looping The While statement, The do statement, The for	14				
	statement, Jumps in Loops, Labeled Loops					
III	Classes, Object and Methods: Defining a class, Creating object, Accessing class					
	members, Constructor, Methods Overloading, Static Member, Inheritance Extending a					
	Class Defining a subclass Constructor, Multilevel inheritance, Hierarchical inheritance,	14				
	Overriding Methods, Final variable and Methods, Final Classes, Abstract method and					
	Classes, Visibility Control, Public access, friend access, Protected access, Private access,					
	Private Protected access, Array, Strings and Vectors, Arrays, One Dimensional array,					
	Creating an array, Two Dimensional ,array, Strings, Vectors, Wrapper Classes.					

School of Research and Technology

(Applicable for Admitted from Academic Session 2019-20 onwards)

Programme: **Diploma in Engineering** Semester –V

IV	Interfaces and Packages: Interface – Multiple Inheritance, Defining interfaces,	
	Extending interfaces, Implementing interfaces, Accessing Interface variable, Packages-	
	Putting Classes Together, System Package, Using system Package, Naming Convention,	14
	Creating Package, Accessing a package, Using a package, adding a class to a package.	
V	Multithreaded Programming and Exception handling:	
V	Multithreaded Programming and Exception handling: Multi Threading - Creating Thread, Extending a thread class, Stopping and Blocking a	14
V		

Text Book/References Books/ Websites:

- 1. E. Balagurusamy; Programming with Java; BPB Publications.
- 2. C Thomas WU; An introduction to object oriented programming; Tata McGraw Hill.
- 3. Patrick Naughton-Herbert Schildt; The complete reference Java 2 (Third Edition); Tata McGraw Hill.
- 4. R.Hubbard John; Programming with Java; Tata McGraw Hill.

Suggested List of Laboratory Experiments: - (Expandable).

- 1. Installation of J2SDK
- 2. Write a program to show Scope of Variables
- 3. Write a program to show Concept of CLASS in JAVA
- 4. Write a program to show Type Casting in JAVA
- 5. Write a program to show How Exception Handling is in JAVA
- 6. Write a Program to show Inheritance
- 7. Write a program to show Polymorphism
- 8. Write a program to show Access Specifies (Public, Private, Protected) in JAVA
- 9. Write a program to show use and Advantages of CONTRUCTOR
- 10. Write a program to show Interfacing between two classes.

Subject Code	Subject Title	Credit	Theory	Practical

(Applicable for Admitted from Academic Session 2019-20 onwards)

Programme: **Diploma in Engineering** Semester –V

		L	Т	P			Total (100)			Total (50)
DCS1506	Minor Project	-	-	1	External (Nil)	Internal (Nil)	(Nil)	External (35)	Internal (15)	Min: 20 (D Grade)

Duration of Theory (Externals): -Nil

Theory Internal- Max Marks: -Nil	Best of Two Mid Semester Test -	Assignment/Quiz/Attendance
	Max Marks: -Nil	Max. Marks: -Nil
Practical Internal Max Marks: 15	Lab work & Sessional –	Assignment / Quiz/ Attendance
	Max Marks: 10	Max. Marks: 05

Pre-Requisite	Student should have basic knowledge of engineering principles.
Course Outcome	The student will be able to-An ability to utilize technical resources:
	1. Identify, analyze & define the problem.
	2. Generate alternative solutions to the problem identified.
	3. Compare & select feasible solutions from alternatives generated.
	4. Compare machines/devices/apparatus for performance practices.
	5. Work effectively in a team.

Unit	Contents (Theory)	Marks
		Weightage
I	The student should prepare a working system or some design or understanding of a complex system (on minor level) that he has selected for his/her minor project work using system analysis tools and submit the same in the form of a write-up i.e. detail project report. The student should maintain proper documentation of different stages of project such as concept evaluation, requirement specification, objectives, work plan, analysis, design, implementation and test plan wherever applicable. Each student is required to prepare a project report based on the above points and present the same at the final examination with a demonstration of their project.	50

Department: Computer Science Engineering

Text Book/References Books/ Websites: Nil

Suggested List of Laboratory Experiments :- (Expandable): Nil

School of Research and Technology

(Applicable for Admitted from Academic Session 2019-20 onwards)

Programme: **Diploma in Engineering** Semester –V

Subject Code	Subject Title	(Credit		Theory		Practical			
	Industrial	L	Т	P	External	Internal	Total	External	Internal	Total (100)
DPE1507	Training-II	-	-	2	(Nil	(Nil)	(Nil)	(70)	(30)	Min: 40 (D Grade)

Duration of Theory (Externals): -Nil

Theory Internal- Max Marks: -Nil	Best of Two Mid Semester Test -	Assignment/Quiz/Attendance
	Max Marks: -Nil	Max. Marks: -Nil
Practical Internal Max Marks: 30	Lab work & Sessional –	Assignment / Quiz
	Max Marks: 25	Max. Marks: 05

Pre-Requisite	Basic principles and theory knowledge of concern discipline of engineering.
Course Outcome	1. To develop general confidence, ability to communicate and attitude, in addition to basic
	technological concepts through Industrial visits, seminars on technical topics and group
	discussion. Correlate theoretical knowledge with practical engineering work.
	2. Ability to learn under actual working environment.

Unit	Contents (Theory)	Marks Weightage
I	As a part of the Diploma in Engineering curriculum, DPE 507, Industrial Training II is a Practical course, which the students should undergo in reputed Private / Public Sector / Government organization / companies as industrial training of minimum two weeks to be undergone by the student in the semester break after IV semester theory examinations. Training period: Minimum of two weeks or 15 (Fifteen) Days. Evaluation: Fifth semester Companies / Areas covered: Any field related to concern branch / discipline of Diploma in Engineering. Grading: As per Scheme. Note: Presentation will take place the following week after you complete your training in V semester. The presentation is evaluation by your class in charge. Report must be submitted during power point presentation. The report evaluation is done by your class in charge. A Viva voce comprising comprehensive questions based on your presentation and training undergone will be put forth after your presentation. Etiquette: Dress properly, Behave well, Portray good image as a university student, Be punctual, Observe work ethics, Concern for safety, Be professional.	50

Text Book/References Books/ Websites: Nil

 $Suggested\ List\ of\ Laboratory\ Experiments: -\ (Expandable):\ Nil$

School of Research and Technology

(Applicable for Admitted from Academic Session 2019-20 onwards)

Programme: **Diploma in Engineering** Semester –V

School of Research and Technology