PEOPLE'S UNIVERSITY, BHOPAL

(Applicable for Admitted from Academic Session 2019-20 onwards)

Programme: M	laster of Technology	er of Technology S			lization: Dig	gital Commu	inication	Semester –I		
Subject Code	Subject Title	(Cred	it		Theory]	Practical	
MT1101	Research Methodology &	L	T	P	External	Internal	Total (100)	External	Internal	Total
MT1101	IPR	3	1	-	(70)	(30)	Min: 40 (D Grade)	(Nil)	(Nil)	Nil

Duration of Theory (Externals): 3 Hours

Theory Internal- Max Marks: 30	Best of Two Mid Semester Test -	Assignment/Quiz/Attendance
	Max Marks: 15	Max. Marks: 15
Practical Internal Max Marks: Nil	Lab work & Sessional –	Assignment/ Quiz/Attendance –
	Max Marks: Nil	Max. Marks: Nil

Pre-Requisite	Nil
Course Outcome	1. Students will be able to understand research problem formulation.
	2. Able to analyze research related information and follow research ethics.
	3. Understand the importance of IPR and its protection for further research work.

		Marks
Unit	Contents (Theory)	Weightage
I	Research Methodology: Meaning; Objective & its types; Research Approaches; Significance of Research; Research Methods vs. Methodology; Research Process, Criteria of Good Research; Meaning of research problem; Sources of research problem; Errors in selecting a research problem; Scope and objectives of research problem; Effective literature studies approaches; Plagiarism; Research Ethics; Problems Encountered by Researchers in India	14
II	Concept and Importance in Research: Features of a good research design, Exploratory Research Design: concept types and uses, Descriptive Research Designs: concept, types and uses. Experimental Design: Concept of Independent & Dependent variables. Interpretation: Meaning & Technique; Precaution in Interpretation; Significance of Report Writing; Layout of the Research Report; Types of Reports; Precautions for Writing Research Reports; Effective technical writing; Role of Computer software in report writing.	14
III	Data Collection: Collection of Primary Data; Observation Method; Interview Method; Collection of Data through Questionnaires; Collection of Data through Schedules; Difference between Questionnaires and Schedules; Collection of Secondary Data.	14
IV	Hypothesis : Null Hypothesis & Alternative Hypothesis. Basic Concepts Concerning Testing of Hypotheses; Procedure for Hypothesis Testing; Flow Diagram for Hypothesis Testing. Qualities of a good Hypothesis.	14
V	Nature of Intellectual Property: Patents; Designs; Trade and Copyright. Process of Patenting and Development; technological research; innovation; patenting; development. International Scenario: International cooperation on Intellectual Property. Procedure for grants of patents; Patenting under PCT. Patent Rights: Scope. Licensing and transfer of technology. Patent Information and databases. Geographical Indications. New Developments in IPR: Administration of Patent System. IPR of Biological Systems.	14

Text Book/References Books/ Websites:-

- 1. C. R. Kothari; Research Methodology; New Age Publication.
- 2. Wayne Goddard and Stuart Melville; Research Methodology: An Introduction.
- 3. Ranjit Kumar; 2 nd Edition; Research Methodology: A Step by Step Guide for beginners.
- 4. Robert P. Merges; Peter S. Menell; Mark A. Lemley; Intellectual Property in New Technological Age.
- 5. T. Ramappa; Intellectual Property Rights Under WTO; S. Chand; 2008.

(Applicable for Admitted from Academic Session 2019-20 onwards)

Programme: Master of Technology	Specialization: Digital Communication	Semester –I

Subject Code	Subject Title	(Credi	it		Theory			Practical	
MTDC1102	DSP & Its	L	Т	P	External	Internal	Total (100)	External	Internal	Total
WITDCI102	Applications	3	1	-	(70)	(30)	Min: 40 (D Grade)	(Nil)	(Nil)	Nil

Duration of Theory (Externals): 3 Hours

• ` '		
Theory Internal- Max Marks: 30	Best of Two Mid Semester Test –	Assignment/Quiz/Attendance –
	Max Marks: 15	Max. Marks: 15
Practical Internal Max Marks: Nil	Lab work & Sessional –	Assignment/ Quiz/Attendance -
	Max Marks: Nil	Max. Marks: Nil

Pre-Requisite	To be able to know about Z-transform & discrete signals.	
Course Outcome	Review of Discrete time signal	
	2. Review of Z-Transform	
	3. Properties of DFT	

Unit	Contents (Theory)	Marks Weightage
I	Review of Discrete Time Signals: sequences, representation. Discrete time systems: linear, time in variant, LTI systems, properties, and constant coefficients difference equations. Frequency Domain representation of discrete time signals and systems.	14
II	Review of Z -Transform – Properties, ROC, Stability, Causality, Criterion. Inverse Z Transform, Recursive and Non Recursive systems, Realization of discrete time system.	14
III	DFT: Properties, Linear and Circular convolution, Discrete Cosine Transform, Relationship between DFT and DCT. Computation of DFT: FFT/Decimation in Time and Decimation in Frequency.	14
IV	FIR and IIR Systems: Basic structure of FIR and IIR, Bilinear Transformation, Design of Discrete time IIR filter-Butterworth, Chebychev, Inverse Chebychev, Elliptic etc. Design of FIR filters by windowing – Rectangular, Bartlett, Hann, Hamming, Kaiser, Window filter, Design method relationship of Kaiser to other window. Application of MATLAB for Design of Digital filter. Effect of Finite register length in filter Design.	14
V	Discrete Time Random Signals: Discrete time random process, Spectrum Representation of finite energy signals, response of linear systems to random signals. Power spectrum estimation: Basic principles of spectrum estimation, estimate of auto con variance, power spectrum cross con variance and cross spectrum. Advance signal processing technique and transforms: multi rate signal processing- down sampling/up sampling, introduction to discrete Hilberts Transform, Wavelet Transform, Haar Transform etc.	14

Text Book/References Books/ Websites:-

- 1. Opperenheim & Schaffer; Discrete time signal Processing; PHI 2nd Edition.
- 2. S. Mittra, "Digital Signal Processing using MATLAB", 2nd Edition.
- 3. Proakis, "Int. to Digital Signal Processing", Maxwell McMillan.

(Applicable for Admitted from Academic Session 2019-20 onwards)

Programme:	Master of Technolog	У	S	peci	alization: D	igital Comm	unication	\$	I		
Subject Code	Subject Title	(Credi	it		Theory			Practical		
MTDC1103	Advanced Digital Communication	L	Т	P	External	Internal	Total (100)	External	Internal	Total	
MIDCIIUS	Communication	3	1	-	(70)	(30)	Min: 40 (D Grade)	(Nil)	(Nil)	Nil	

Duration of Theory (Externals): 3 Hours

Theory Internal- Max Marks: 30	Best of Two Mid Semester Test -	Assignment/Quiz/Attendance –
	Max Marks: 15	Max. Marks: 15
Practical Internal Max Marks: Nil	Lab work & Sessional –	Assignment/ Quiz/Attendance –
	Max Marks: Nil	Max. Marks: Nil

Pre-Requisite	Basic Knowledge of Digital communication system.
Course Outcome	Review of probability and Stochastic Processes.
	2. To know about Characterization of Communication Signal and System.
	3. Optimum receiver for Additive White Gaussian Noise.

Unit	Contents (Theory)	Marks Weightage
I	Digital Modulation Techniques: Digital modulation formats, Coherent binary modulation techniques, Coherent Quadrature – modulation techniques, Non-coherent binary modulation techniques, Comparison of binary and quaternary modulation techniques, M-ray modulation techniques, Power spectra, Bandwidth efficiency, M-array modulation formats viewed in the light of the channel capacity theorem, Effect of inter symbol interference, Bit verses symbol error probabilities, Synchronization, Applications.	14
П	Coding Techniques: Convolutional encoding, Convolutional encoder representation, Formulation of the convolutional decoding problem, Properties of convolutional codes: Distance property of convolutional codes, Systematic and nonsystematic convolutional codes, Performance Bounds for Convolutional codes, Coding gain, Other convolutional decoding algorithms, Sequential decoding, Feedback decoding, Turbo codes.	14
III	Linear and Adaptive Equalization: Linear equalization, Decision -feedback equalization, Reduced complexity ML detectors, Iterative equalization and decoding - Turbo equalization. Adaptive linear equalizer, adaptive decision feedback equalizer, Recursive least square algorithms for adaptive equalization.	14
IV	Spread Spectrum Signals for Digital Communication: Model of spread spectrum digital communication system, Direct sequence spread spectrum signals, Frequency hopped spread spectrum signals, CDMA, Time hopping SS, Synchronization of SS systems.	14
V	Digital Communication through Fading Multipath Channels: Characterization of fading multipath channels, The effect of signal characteristics on the choice of a channel model, Frequency non selective, Slowly fading channel, Diversity techniques for fading multipath channels, Digital signals over a frequency selective, Slowly fading channel.	14

Text Book/References Books/ Websites:-

- 1. Proakis J.J.,D Wozencraft J.M. and Jacobs I.M.; Principles of Communication Engineering ;John Wiley.
- 2. Carison A.; Communication System, 3rd; McGraw Hill.
- 3. Simon Haykin; Digital Communication; Reprint, Wiley.
- 4. Van Trees H.L.; Detection Estimation and Modulation Theory, Vol. 1; Wiley.

Nil

(Nil)

PEOPLE'S UNIVERSITY, BHOPAL

(Applicable for Admitted from Academic Session 2019-20 onwards)

(30)

Min: 40

(D Grade)

(Nil)

Programme: Master of Technology				Sp	ecia	lization: Dig	jital Commu	inication	S	emester –I	
	Subject Code	Subject Title	(Cred	it		Theory			Practical	
		Modern Telephone	L	Т	P	Entomol	Intornal	Total (100)	Entomol	Intornal	Total
	MTDC1104	Switching				External (70)	Internal (30)	Min. 40	External	Internal	

(70)

Duration of Theory (Externals): 3 Hours

System

• ` ` '		
Theory Internal- Max Marks: 30	Best of Two Mid Semester Test -	Assignment/Quiz/Attendance
	Max Marks: 15	Max. Marks: 15
Practical Internal Max Marks: Nil	Lab work & Sessional -	Assignment/ Quiz/Attendance –
	Max Marks: Nil	Max. Marks: Nil

Pre-Requisite	Basic Knowledge of communication system.
Course Outcome	To understand stored program control and different types of switching.
	2. To know about time division space, multiplexed switching & digital PBX Switching.
	3. To understand traffic load, grade of service and different modeling system.

Unit	Contents (Theory)	Marks Weightage
I	Electronic Space Division Switching: Stored program control (SPC), switching matrices, multistage switching, enhance services photonic switching.	14
II	Time Division Switching :- Time division space, and time switching, multiplexed switching, combination switching, T-S, T-S-T, switching n-stage	14
III	Traffic Engg. :- Traffic load, Grade of service, ErJang's formulas, blocking modeling switching systems, Blocking model.	14
IV	Subscriber Loop, Dialing Systems :- Switching hierarchy & routing, Transmission plan, numbering plan, charging plan, signaling technique.	14
V	Local Access Techniques: Digital subscriber lines, DSL, ADSL etc, WLL, FIL."wireless for local telephone services.	14

Text Book/References Books/ Websites:-

- 1. Thaigrajan; Telecomm. Switching systems & networks; PHI.
- 2. Taub & Schilling; Communication System; Mc Graw Hill.
- 3. James Martin; Telecomm. & the Computers; PHI.
- 4. Annabelz Dodd; The Issential Guide to Telecomm, Pearson Educah.

(Applicable for Admitted from Academic Session 2019-20 onwards)

_	Programme: Ma	ster of Technology		Sp	Specialization: Digital Communication			S	emester –I			
	Subject Code	Subject Title	C	Credi	it		Theory			Practical		
	MTDC1105	Microcontroller	L	Т	P	External	Internal	Total (100)	External	Internal	Total	
	WIIDCI105	System	3	1	-	(70)	(30)	Min: 40 (D Grade)	(Nil)	(Nil)	Nil	

Duration of Theory (Externals): 3 Hours

Theory Internal- Max Marks: 30	Best of Two Mid Semester Test -	Assignment/Quiz/Attendance –
	Max Marks: 15	Max. Marks: 15
Practical Internal Max Marks: Nil	Lab work & Sessional –	Assignment/ Quiz/Attendance –
	Max Marks: Nil	Max. Marks: Nil

Pre-Requisite	Basic Knowledge of 8085/8086 Microprocessor
Course Outcome	1. To understand the review of 8-bit & 16-bit microprocessor.
	2. To understand the concept of single chip microcontrollers.
	3. To be able to understand the software development modular approach.

Unit	Contents (Theory)	Marks Weightage
I	Introduction: Review of 8-Bit and 16-bit microprocessor, support chips and interfacing techniques, single chip micro-computers, architecture, program and data memory, ports, input Output interfacing and programming,	14
II	Single Chip Microcontrollers: INTEL 8051/8751, MOTOROLA 68HC0/68HC11 architecture, instruction set and programming, Memory mapping, addressing modes, Registers, expanded modes. Interrupt handling timing and serial I/O.	14
III	8051 Serial Communication: Connection to RS-232, Serial Communication Programming- Interrupts Programming, Microcontroller Interfacing, Key Board Displays, Pulse Measurement, D / A and A/D conversion	14
IV	Software Development : Software development Modular approach, integrated software development environment, Object oriented interfacing and programming, Recursion and debugging.	14
V	Controllers: ATMEL 89C51 / 52 and PIC micro-Controllers- Case studies. Design and application of Micro-Controller in Data acquisition, Embedded controllers, Process control etc. DSP Processor architecture.	14

Text Book/References Books/ Websites:-

- 1. Ayala J.K.; The 8051 Microcontroller: Architecture, programming and applications; Penram International (2005) 3rd ed.
- 2. Mazidi, E. and Mazidi, F.; The 8051 Microcontroller and Embedded Systems; Prentice-Hall of India (2004) 2nd ed.
- 3. Peatman J.; Embedded system Design using PIC18Fxxx; Prentice Hall, 2003.

(Applicable for Admitted from Academic Session 2019-20 onwards)

Programme: Master of Technology				Specialization: Digital Communication					Semester –I		
	Subject Code	Subject Title	(Credi	it		Theory			Practical	
	MTDC1106	Digital Signal	L	Т	P	Evtamal	Intownal	Total	External	Internal	Total (100)
	WIIDCII00	Processing Lab	-	-	2	External (Nil)	Internal (Nil)	Nil	(70)	(30)	Min: 40 (D Grade)

Duration of Theory (Externals): 3 Hours

Theory Internal- Max Marks: Nil	Best of Two Mid Semester Test – Max Marks: Nil	Assignment/Quiz/Attendance – Max. Marks: Nil
Practical Internal Max Marks: 30	Lab work & Sessional –	Assignment/Quiz/Attendance
	Max Marks: 15	Max. Marks: 15

Pre-Requisite	Nil
Course Outcome	To implement signal processing concepts using DSP Processors.
	2. To conduct the experiments on different digital filters
	3. To compare DCT and DFT for signal analysis

Unit	Contents (Theory)	Marks Weightage
-	With help of MATLAB programming solve the problem related to DSP & its Applications. Representation of basic signals & waveforms, Designing of analog low pass & high pass filter, Designing of digital Butterworth (low pass, high pass. Band pass & band stop) filter, Convolution, z-transform & inverse z-transform.	100

Text Book/References Books/ Websites:- Nil Suggested List of Laboratory Experiments:- (Expandable):

- 1. To represent Sine & cosine wave.
- 2. To represent unit step, unit impulse, Exponential & ramp signal.
- 3. To design analog low pass & high pass filter.
- 4. To design digital Butterworth (low pass, high pass. Band pass & band stop) filter.
- 5. To find convolution of two functions.
- 6. To find the z-transform & its inverse.
- 7. To draw pole zero diagram for a function in z-domain & display the frequency response of given z- transform.

PEOPLE'S UNIVERSITY, BHOPAL

(Applicable for Admitted from Academic Session 2019-20 onwards)

_	Programme: Ma	ster of Technology		S	pecia	alization: Di	gital Comm	unication	S	I	
	Subject Code	Subject Title	(Cred	lit	Theory Practical					
	MTDC1107	Microcontroller	L	T	P	Evtamal	Internal	Total	External	Internal	Total (100)
	WIIDCIIU/	lab	-	-	2	External (Nil)	(Nil)	Nil	(70)	(30)	Min: 40 (D Grade)

Duration of Theory (Externals): Nil

Theory Internal- Max Marks: Nil	Best of Two Mid Semester Test	Assignment/Quiz/Attendance –
	–Max Marks: Nil	Max. Marks: Nil
Practical Internal Max Marks: 30	Lab work & Sessional –	Assignment / Quiz/ Attendance -
	Max Marks: 15	Max. Marks: 15

Pre-Requisite	Nil
	1. To introduce the basics of microcontroller and its applications.
Course Outcome	2. To provide in depth knowledge of 8051 and 8751 assembly language programming.
	3. Design circuits for various applications using microcontrollers.

Unit	Contents (Theory)	Marks Weightage
-	Write an assembly language program to perform the addition, subtraction & multiplication of two 16-bit numbers, Addition & Subtraction of 8-bit numbers using 8051.	100

Text Book/References Books/ Websites:- Nil **Suggested List of Laboratory Experiments :- (Expandable):**

- 1. Write an assembly language program to perform the addition of two 16-bit numbers.
- 2. Write an assembly language program to perform the subtraction of two 16-bit numbers.
- 3. Write an assembly language program to perform the multiplication of two 16-bit numbers.
- 4. Write an assembly language program to find the square of a given number N.
- 5. Write an assembly language program to count number of ones and zeros in a eight bit number.
- 6. Addition of 8-bit numbers using 8051.
- 7. Subtraction of 8-bit numbers using 8051.

(Applicable for Admitted from Academic Session 2019-20 onwards)

Programme: Master of Technology Specialization: Digital Communication Semester –I

_	108144111111			P					8 01110	.5002 _		
	Subject Code	Subject Title	(Credi	it		Theory]	Practical		
	MT 1108	Audit Course -I	L	Т	P	External	Internal	Total (50)	External	Internal	Total	
	W11 1108	(Value Education)	2	-	-	(35)	(15)	Min: 20 (D Grade)	(Nil)	(Nil)	Nil	

Duration of Theory (Externals): 2 Hours

Theory Internal- Max Marks: 15	Best of Two Mid Semester Test -	Assignment/Quiz/Attendance-
	Max Marks: Nil	Max. Marks: 15
Practical Internal Max Marks: Nil	Lab work & Sessional –	Assignment / Quiz /Attendance –
	Max Marks: Nil	Max. Marks: Nil

Pre-Requisite	Nil	
	Knowledge of self-development.	
Course Outcome	2. Learn the importance of Human values.	
	3. Developing the overall personality.	

Unit	Contents (Theory)	Marks Weightage
I	Values and self-development –Social values and individual attitudes; Work ethics, Indian vision of humanism; Moral and non- moral valuation; Standards and principles; Value judgments.	07
II	Importance of cultivation of values; Sense of duty. Devotion, Self-reliance. Confidence, Concentration; Truthfulness, Cleanliness; Honesty, Humanity; Power of faith, National Unity; Patriotism. Love for nature, Discipline	07
III	Personality and Behavior Development - Soul and Scientific; attitude; Positive Thinking. Integrity and discipline; Punctuality, Love and Kindness; Avoid fault Thinking; Free from anger, Dignity of labour.	07
IV	Universal brotherhood and religious tolerance; True friendship; Happiness Vs suffering, love for truth; Aware of self-destructive habits; Association and Cooperation; Doing best for saving nature.	07
V	Character and Competence –Holy books vs Blind faith; Self-management and Good health.; Science of reincarnation; Equality, Nonviolence, Humility, Role of Women; All religions and same message; Mind your Mind, Self-control; Honesty, Studying effectively.	07

Mandatory (Non Credit) subject according to AICTE. Non University Examination, End Sem marks not to be included in total marks and credit. Students must pass in this subject.

Text Book/References Books/ Websites:-

1. S.K. Chakroborty, Values and Ethics organizations Theory and practice; Oxford University Press, New Delhi.