<u>PEOPLE'S UNIVERSITY, BHOPAL</u> (Applicable for Admitted from Academic Session 2019-20 onwards)

Program	nme: M	aster o	of Technology	Specialization: Digital Communication S						emester –	III	
Subject	t Code	Su	ıbject Title	(Credi	it		Theory			Practical	
MT1	3101	Indu	ıstrial Safety	L	Т	Р	External (70)	Internal	Total (100)	External	Internal	Total
			-	3	1	-	(70)	(30)	(D Grade)	(1111)	(1811)	Nil
D	uration	of Th	eory (Externa	ls): 3	3 Ho	urs						
Theo	ry Inter	nal- N	Iax Marks: 30)		В	est of Two M	Iid Semeste	er Test –	Assignment	/Quiz/Atter	ndance-
						N	Iax Marks: 1	5		Max. Marks	: 15	
Pract	tical Inte	ernal I	Max Marks: N	Vil			ab work & S	essional –		Assignment	/ Quiz/Atte	endance-
						IV	lax Marks: N	(11		Max. Marks	: IN11	
Pre-	Requis	ite	Functioning of	of Er	igine	ering	g equipments	and industr	y work cultu	re.		
			1.Student sh	ould	be a	ble t	o apply stand	lard safety p	procedures in	an industria	lenvironm	ent.
Cou	rse Outc	ome	2. An ability	' t0 1	denti	ity, t edge	ormulate, an	d solve bro	adly-defined	technical or	scientific j	problems relevant
			to the safe	ety.	10 101	cuge	of mathema	ties and set	chec and of		ies to areas	, relevant
T T 1 (0						Marks
Unit						C	contents (The	ory)	\sim		W	Veightage
	Industr	ial Sa	fety: Accident	; cau	ses;	types	s; results and	control; me	echanical and	l electrical h	azards;	
I	health a	nd saf	ety; wash roor	ns; c	lrink	ing v	water layouts	; light; clea	nliness; fire;	guarding; p	ressure	14
	vessels;	etc; S	afety color cod	es. F	Fire p	reve	ntion and fire	efighting; ec	quipment and	l methods.		
	Fundan Primary	nental and	secondary fu	ance	Eng	ginee and	ring: Defini	tion and an	m of mainte tenance den	nance engin artment. Ty	eering;	
Π	mainten	ance;	Types and ap	plica	ation	s of	tools used	for mainter	nance; Main	tenance cost	& its	14
	relation	with r	eplacement eco	onon	ıy; S	ervic	ce life of equi	ipment.				
	Wear a	and C	Corrosion and	the	eir F	reve	ention: Wea	r- types; c	auses; effec	ts; wear rec	duction	
III	applicat	ions o	of Screw dow	nu a /n g	rease		p; Pressure	grease gui	n; Splash lu	ubrication; (Gravity	14
	lubricati	on; W	Vick feed lubri	catic	on; S	ide f	eed lubricati	on; Ring lu	ubrication; D	Definition; pr	inciple	
	and fact	ors aff	fecting the corr	osio	n; Ty	pes of	of corrosion;	corrosion p	prevention mo	ethods.	d and	
	applicat	ions: s	sequence of fa	ult f	indi	ept 1g ad	ctivities: sho	w as decisi	on tree: dra	w decision t	ree for	
IV	problem	is in m	nachine tools; l	nydra	aulic	; pne	eumatic; auto	motive; the	rmal and ele	ctrical equip	ment's	14
	like;. Ar	iy one	machine tool;	Pun	ıp ;A	ir co	mpressor; In	ternal comb	oustion engin	e; Boiler; Ele	ectrical	
	motors; Periodi	Types	s of faults in ma	achir Mai	nten	ols ai ance	nd their gener	ral causes.	concept and	need: deor	easing	
	cleaning	g and r	epairing schen	nes;	overl	hauli	ng of mecha	nical compo	onents; overl	nauling of ele	ectrical	
	motor;	comm	on troubles a	ind :	reme	dies	of electric	motor; rep	pair complex	xities and i	ts use;	
V	definition	on; nee	ed; steps and a	adva	ntage Maci	es of	f preventive	maintenanc	e. Steps/pro	cedure for p	eriodic	14
	mainten	ance	of mechanical	and	l ele	ctric	al equipmen	t; advantag	ges of preve	ntive mainte	enance.	
	Repair c	ycle;	concept and im	port	ance				•			

Text Book/References Books/ Websites:-

- 1. Maintenance Engineering Handbook; Higgins & Morrow; Da Information Services.
- 2. Maintenance Engineering; H. P. Garg; S. Chand and Company.
- 3. Pump-hydraulic Compressors; Audels; Mcgrew Hill Publication.
- 4. Foundation Engineering Handbook; Winterkorn; Hans; Chapman & Hall London

Suggested List of Laboratory Experiments :- (Expandable): Nil

School of Research and Technology Department: Electronics & Communication Engineering

<u>PEOPLE'S UNIVERSITY, BHOPAL</u> (Applicable for Admitted from Academic Session 2019-20 onwards)

Program	nme: №	laster (of Technology		Sp	ecia	lization: Dig	ital Commu	inication	S	emester –	III
Subject	Code	Su	bject Title	0	Credi	it		Theory			Practical	
	100			L	Т	Р	External	Internal	Total (100)	External	Internal	Total
MIIS	5102	vv as	te to Energy	3	1	-	(70)	(30)	Min: 40 (D Grade)	(Nil)	(Nil)	Nil
D	uration	of Th	eory (Externa	ls): 3	3 Ho	urs						
Theo	ry Inter	nal-M	lax Marks: 30			E	Best of Two M	Iid Semeste	er Test –	Assignment	/Quiz/Atter	ndance-
						N	Aax Marks: 1	5		Max. Marks	: 15	1
Pract	tical Int	ernal I	Max Marks: N	il			ab work & S	essional –		Assignment	/ Quiz/Atte	endance-
						N	/lax Marks: N	11		Max. Marks	: IN11	
Pre-	Requis	site	Nil									
			1. Student sh	nould	l be	able	to apply the	e knowledg	ge about the	operations of	of Waste to	o Energy
Cour	rse Outo	come	Plants.								•	
			2. Apply the	knov	vledg	ge in	planning and	d operations	s of Waste to	Energy plan	ts.	
	3. Able to analyze the various aspects of Waste to Energy Management Systems.											
Unit						0	Contents (The	ory)	\sim		v	Marks Veightage
	Introduction to Energy from Waste: Classification of waste - agro based, forest residues,											
т	domesti	c was	te, industrial v	vaste	(ha	zard	ous and non-	-hazardous)	digestors ·W	zation of wa laste produc	ste for	14
1	differen	it secto	ors i.e. domest	ic, i	ndus	trial.	agriculture,	postconsur	ner waste et	c. Waste Se	election	14
	criteria.							N.				
	Techno	logies	for Waste to	Ene	rgy l	Bioc	hemical Con	version – I	Energy produ	iction from o	organic	
11	waste th	nrough	anaerobic dige	estio	n and	1 fer	mentation. The Gasification:	Plasma Arc	nical Conver	$s_1 on - Comb$	oustion,	14
	Waste	to Ene	ergy Options:	Lan	dfill	gas.	collection ar	r lasilia Ale	. Refuse De	rived Fuel (F	RDF) –	
	fluff, bi	riquette	es, pellets. Alt	ernat	e Fu	el R	esource (AFI	R) – produc	ction and use	e in Cement	plants,	
ш	Therma	l pow	er plants and	Indu	strial	boi	lers. Conver	sion of was	stes to fuel	resources for	r other	14
	useful e	energy	applications. E	inerg	y fro	om P	lastic Wastes	– Non-recy	vclable plasti	c wastes for	energy	
	standar	y. En dizatio	n.	y 110	лп	wasi	les and opti	inization o	of its use,	Deneminarkii	ig allu	
	Centra	lized a	and Decentral	ized	Was	ste t	o Energy Pla	ants: collec	tion, segrega	tion, transpo	ortation	
	and sto	rage r	equirements. I	Locat	tion	and	Siting of 'W	Vaste to En	ergy' plants	. Industry S	pecific	
IV	Applica	tions -	– In-house use	2 - 5	sugar	, di	stillery, phar	maceuticals	, Pulp and β	paper, refine	ery and	14
	distribu	tion at	i industry and a	iny c ison	of C	entr	alized and de	centralized	systems and	its operation	s	
	Waste	To E	nergy & Env	viron	men	tal	Implications	s: Environn	nental stand	ards for Wa	aste to	
	Energy	Plant	operations an	nd g	as c	lean	u-up;Savings	on non-rer	newable fue	l resources;	Carbon	
V	Credits:	Carbo	on foot calculat	ions	and	carb	on credits tra	nsfer mecha	anisms;Energ	gy Analysis;	Global	14
	product	ion dis	s iii waste to stribution and u	ene: Ise in	igy] Indi	prod ia. R	ole of the Go	vernment ir	scenario or	Waste to En	ergy'	
 Т	ext Boo	k/Refe	erences Books	/ We	bsite	es:-		· similarit II	Promoting			

- 1. Industrial and Urban Waste Management in India; TERI Press.
- 2. Banwari Lal and Patwardhan; Wealth from Waste: Trends and Technologies; TERI Press.
- 3. S.N Mukhopadhyay; Fundamentals of waste and Environmental Engineering; TERI Press.
- 4. www.envfor.nic.in www.cpcb.nic.in
- 5. www.eai.in/ref/ae/wte/typ/clas/india_industrial_wastes.html
- 6. www.teriin.org/projects/green/pdf/National-Waste.pdf

<u>PEOPLE'S UNIVERSITY, BHOPAL</u> (Applicable for Admitted from Academic Session 2019-20 onwards)

Program	me: Mast	er of Technology		Sp	eci	alization: Dig	jital Commu	inication	S	emester –	III		
Subject	t Code	Subject Title	0	Cred	it		Theory			Practical			
	2102	Cost Management of	L	T P External Internal (100) External In						Internal	Total		
MTI.	3103	Engineering Projects	3	1	-	- (70)	(30)	Min: 40 (D Grade)	(Nil)	(Nil)	Nil		
Du	ration of	Theory (Externa	als): (3 Ho	urs								
Theor	y Internal-Max Marks: 30 Best of Two Mid Semester Test – Assignment/Qu										ndance-		
	Max Marks: 15 Max. Marks: 1												
Practi	tical Internal Max Marks: Nil Lab work & Sessional –									/Quiz/Att	endance-		
]	Max Marks: N	Jil		Max. Marks	: Nil			
Pre-R	equisite	Nil							. .	\diamond			
Cours	se Outcom	1.Students sl & more ed	nould	be a be	able alter	to perform an natives.	nd evaluate	present wort	h, future wor	th and ann	ual worth		
Cours	e outcon	2.Able to can	ry ot	it and	d ev	aluate benefit	/cost, life cy	cle and Brea	ak-even analy	ysis.			
Unit	Contents (Theory)									w	Marks 'eightage		
I	Introduct decision- Objective control;	tion and Overvie making; Relevan es of a Costing S Provision of data	ew o nt co Syster for D	f the st; I m; Ir Decisi	e S Diffe nven ion-	Manageme Incrementa n; Creation	ent Process al cost and of a Databa	Cost concep Opportunity ase for opera	ots in cost. tional	14			
	Project:	meaning; Differe	ent tv	pes:	wh	v to manage:	cost overr	uns centers:	various stag	ges of			

	control; Provision of data for Decision-Making.	
п	Project: meaning; Different types; why to manage; cost overruns centers; various stages of project execution: conception to commissioning. Project execution as conglomeration of technical and nontechnical activities. Detailed Engineering activities. Pre project execution main clearances and documents Project team: Role of each member. Importance Project site: Data required with significance. Project contracts. Types and contents. Project execution Project cost control. Bar charts and Network diagram	14
III	Project commissioning: mechanical and process Cost Behavior and Profit Planning Marginal Costing; Distinction between Marginal Costing and Absorption Costing; Break-even Analysis; Cost-Volume-Profit Analysis. Various decision-making problems. Standard Costing and Variance Analysis.	14
IV	Pricing strategies: Pareto Analysis. Target costing; Life Cycle Costing. Costing of service sector. Just-in-time approach; Material Requirement Planning; Enterprise Resource Planning; Total Quality Management and Theory of constraints. Activity-Based Cost Management; Bench Marking; Balanced Score Card and Value-Chain Analysis. Budgetary Control; Flexible Budgets; Performance budgets; Zero-based budgets. Measurement of Divisional profitability pricing decisions including transfer pricing.	14
V	Quantitative techniques for cost management; Linear Programming; PERT/CPM; Transportation problems; Assignment problems; Simulation; Learning Curve Theory.	14

Text Book/References Books/ Websites:-

- 1. Cost Accounting A Managerial Emphasis; Prentice Hall of India; New Delhi.
- 2. Charles T. Horngren and George Foster; Advanced Management Accounting .
- 3. Robert S Kaplan Anthony A. Alkinson; Management & Cost Accounting.
- 4. Ashish K. Bhattacharya; Principles & Practices of Cost Accounting A. H. Wheeler publisher.
- 5. N.D. Vohra; Quantitative Techniques in Management; Tata McGraw Hill Book Co. Ltd.

<u>PEOPLE'S UNIVERSITY, BHOPAL</u> (Applicable for Admitted from Academic Session 2019-20 onwards)

Programme: M	laster o	of Technolog	у	S	pec	ialization: Di	igital Comm	unication	Semester –III		
Subject Code	Sub	ject Title	(Credi	it		Theory		Practical		
MTDC12201	Infe	Information		Т	Р	External	Internal	Total (100)	External	Internal	Total
MTDC15201	Coding	3	1	-	(70)	(30)	Min: 40 (D Grade)	(Nil)	(Nil)	Nil	
Duration	of The	eory (Exteri	nals):	: 3 H	our	S					
Theory Interna	Theory Internal- Max Marks: 30						Mid Semes	ter Test –	Assignmen	t/Quiz/Atter	ndance –
						Max Marks:	15		Max. Mark	s: 15	
Practical Intern	nal Ma	x Marks: Ni	il			Lab work & Sessional –			Assignmen	t/Quiz/Atte	ndance –
						Max Marks: Nil Max. Marks: Nil					
Pre-Requisite		To understa	and th	ne pri	incip	ples and applie	cations of in	nformation th	eory.	\mathcal{O}	
Course Outcom	ie	1. To	be al	ole to	unc	lerstand about	t informatio	on, entropy &	coding.		
		2. To	unde	erstan	d la	yout different	types of ch	annels and c	nannel capac	ity.	
		3. To	unde	erstan	id at	out cyclic co	des & its pr	operties.	U		

Unit	Contents (Theory)	Marks Weightage
Ι	Introduction to uncertainty, information, entropy and its properties, entropy of binary memory less source and its extension to discrete memory less source, coding theorem, data compression, prefix coding, HUFFMAN coding, Lempel-Ziv Coding	14
II	Discrete memory less channels, Binary symmetric channel, mutual information & its properties, channel capacity, channel coding theorem, and its application to BSC, Shannon's theorem on channel capacity, capacity of channel of infinite bandwidth, Bandwidth signal to noise Trade off, Practical communication system in light of Shannon's theorem, Fading Channel.	14
III	Group and field of Binary system Galois field and its construction in GF (2m) and its basic properties, vector spaces and matrices in GF(2), Linear Block Codes, Systematic codes, and its encoding circuits, syndrome and error detection minimum distance, error detecting and correcting capabilities of block code, Decoding circuits, Probability of undetected error for linear block code in BSC, Hamming code and their applications.	14
IV	Cyclic codes and its basic properties, Generator & parity check matrix of cyclic codes, encoding & decoding circuits, syndrome computation & error detection, cyclic Hamming codes.	14
v	Introduction to BCH codes, its encoding & decoding, error location & correction. Introduction to convolution codes, its construction & viterbi algorithm for maximum likelihood decoding	14

Text Book/References Books/ Websites:-

- 1. T. M. Cover, J. A, Thomas; Elements of information theory; Wiely.
- 2. R. W. Hamming; Coding and information theory; Prentice Hall.
- 3. A.B. Carlson; Communication Systems; McGraw Hill Publishers.

<u>PEOPLE'S UNIVERSITY, BHOPAL</u> (Applicable for Admitted from Academic Session 2019-20 onwards)

Programme:	Master o	of Technolog	у	S	peci	alization: D	Semester –III				
Subject Code	(Credi	it	Theory			Practical				
MTD(12202	Embedded		L	Т	Р	External	Internal	Total (100)	External	Internal	Total
MTDC15202	in Design	3	1	-	(70)	(30)	Min: 40 (D Grade)	(Nil)	(Nil)	Nil	
Duratio	on of The	eory (Exteri	nals)	: 3 H	lour	5					
Theory Interna	l- Max N	Marks: 30				Best of Two	Mid Semes	ter Test –	Assignmen	t/Quiz/Atter	idance –
						Max Marks:	15		Max. Mark	s: 15	
Practical Intern	nal Max	Marks: Nil				Lab work & Sessional –			Assignment/ Quiz/Attendance –		
						Max Marks: Nil Max. Marks: Nil					
Pre-Requisite		Basic know	ledg	e of e	embe	edded system	hardware a	nd firmware	design will b	e explored.	
Course Outcom	ie	1. To	unde	erstan	nd th	e Embedded I	Micro contr	oller Cores.			
	2. To	get t	o kno	ow a	bout Embedd	ed System l	Design Aspec	ets.			
		3. To	unde	erstan	nd th	he Serial Communication Interface.					

Unit	Contents (Theory)	Marks Weightage
Ι	Introduction to Embedded System: Introducing Embedded Systems, Philosophy, Embedded Systems, Embedded Design and Development Process.	14
П	The Hardware Side: An Introduction, The Core Level, Representing Information, Understanding Numbers, Addresses, Instructions, Registers-A First Look, Embedded Systems-An Instruction Set View, Embedded Systems-A Register View, Register View of a Microprocessor The Hardware Side: Storage Elements and Finite-State Machines The concepts of State and Time, The State Diagram, Finite State Machines- A Theoretical Model.	14
Ш	Memories and the Memory Subsystem: Classifying Memory, A General Memory Interface, ROM Overview, Static RAM Overview, Dynamic RAM Overview, Chip Organization, Terminology, A Memory Interface in Detail, SRAM Design, DRAM Design, DRAM Memory Interface, The Memory Map, Memory Subsystem Architecture, Basic Concepts of Caching, Designing a Cache System, Dynamic Memory Allocation.	14
IV	Embedded Systems Design and Development: System Design and Development, Life-cycle Models, Problem Solving-Five Steps to Design, The Design Process, Identifying the Requirements, Formulating the Requirements Specification, The System Design Specification, System Specifications versus System Requirements, Partitioning and Decomposing a System, Functional Design, Architectural Design, Functional Model versus Architectural Model, Prototyping, Other Considerations, Archiving the Project.	14
V	Performance Analysis and Optimization: Performance or Efficiency Measures, Complexity Analysis, The methodology, Analyzing code, Instructions in Detail, Time, etc. – A more detailed look, Response Time, Time Loading, Memory Loading, Evaluating Performance, Thoughts on Performance Optimization, Performance Optimization, Tricks of the Trade, Hardware Accelerators, Caches and Performance.	14

Text Book/References Books/ Websites:-

- 1. Raj Kamal; Embedded Systems Architecture Programming and Design; Tata MC Graw-Hill.
- 2. Tim Wilmshurst; Designing Embedded Systems with PIC Microcontrollers; Elsevier.
- 3. Steve Heath; Embedded Systems Design; Newnes publications.

<u>PEOPLE'S UNIVERSITY, BHOPAL</u> (Applicable for Admitted from Academic Session 2019-20 onwards)

Prog	ramme: №	laster o	of Technolog	y	S	peci	ialization: Di	igital Comm	nunication		Semester -	-III
Subj	ect Code	Sub	ject Title	(Credi	it		Theory			Practical	
мтг	DC13203	C13203 Digital Image Processing			Т	Р	External	Internal	Total (100)	External	Internal	Total
	010200			3	1	-	(70)	(30)	Min: 40 (D Grade)	(Nil)	(Nil)	Nil
	Duration	of Th	eory (Extern	nals):	: 3 H	our	S					
Theor	ry Interna	l- Max	Marks: 30)			Best of Two	Mid Semes	ter Test –	Assignmen	t/Quiz/Atte	ndance –
							Max Marks:	15		Max. Mark	s: 15	
Pract	ical Interr	nal Ma	x Marks: Ni	il			Lab work &	Sessional	_	Assignmen	t/ Quiz/Atte	endance –
							Max Marks:	Nil		Max. Mark	s: Nil	
Pre-I	Requisite		To learn an	d une	derst	and	the fundamen	tals of digit	al image pro	cessing, and	various ima	ge
	-		Transforms	, Ima	ige E	hhai	ncement Tech	niques, Ima	age restoratio	n Technique	S.	-
Cours	se Outcom	Outcome 1. To study the image fundamentals and mathematical transforms neces										
		processing.										
		2. To study the image enhancement techniques.										
			3. To	study	y ima	ige r	estoration pro	ocedures.				
												Maalaa
Unit						С	ontents (Theor	ry)	\mathcal{O}			Marks Veightage
Ŧ	Introdu	ction:	Image as a	2D	data,	, Im	age represen	tation – G	ray scale and	d Color ima	ges,	
I	1mage sa		g and quant	izati гц	on. F	requ	uency domain	processing	– Two dime	nsional ortho	ogonal	14
	transform	IS: DF I	Ι, ΓΓΙ, ΥΥΠ	г. па	aar u	ans	$\frac{101111}{101111}, \mathbf{KL} 1, 1$					
	Image E	nhance	ement: Filter	s in s	spatia	al an	d frequency d	omains, his	stogram-base	d processing	2.	
II	Homomo	orphic	filtering.Ed	ge de	etecti	on –	- non paramet	ric and mod	iel based app	roaches, LO	G	14
	filers, loc	alizatio	on problem.				(/)					
						ſ	\cdots					
Ш	Image R	estorat	tion : PSF, c	ircula	int ar	nd bl	lock circulant	matrices, d	leconvolution	, restoration		14
111	using inv	erse fil	tering. Wien	er fil	tering	g and	d maximum e	ntropy- bas	ed methods.			17
			(À								
	Mathema	atical I	Morphology	: Bi	nary	mor	phology, dilat	ion, erosior	n, opening an	d closing		
IV	duality re	lations	, gray scale 1	norp	holog	gy, I	mage commu	$n_1 cat_{10} - J$	IPED, JPEG	2000, MPEG	s and	14
	п.∠ox sta	muards	packet vide	J, en		once	cannent.					
	Image R	eprese	ntation And	Rec	ogni	tion	: Image textur	e analysis o	co-occurrence	e matrix, mea	asures	
V	of texture	es, stati	stical models	s for	textu	ires,	principal co	mponent a	analysis.Mis	c. topic such	as –	14
	Hough Ti	ransfor	m, boundary	dete	ction	, cha	ain coding, an	a segment	ation, thresh	nolding met	nods.	

Text Book/References Books/ Websites:-

- 1. R. Gonzalez and E. Woods; Digital Image Processing; PHI.
- 2. A. K. Jain; Fundamentals of digital image processing; Prentice Hall of India.
- 3. W. K. Pratt; Digital image processing; Prentice Hall.

<u>PEOPLE'S UNIVERSITY, BHOPAL</u> (Applicable for Admitted from Academic Session 2019-20 onwards)

Programme: Master of Technology

Specialization: Digital Communication

Semester –III

Subject Code	Subject Title		Cred	lit		Theory			Practical		
MTDC1202	Due Dissertation	L	Т	Р	External	Internal	Total	External	Internal	Total (300)	
MIDC1305	Pre-Dissertation	-	-	6	(Nil)	(Nil)	Nil	(200)	(100)	Min: 120	
Duration	Duration of Theory (Externals): Nil										
Theory Interna	l- Max Marks: Nil			В	est of Two N	Aid Semeste	er Test –	Assignme	ent/Quiz/At	tendance –	
				Ν	lax Marks: N	Jil		Max. Marks: Nil			
Practical Intern	nal Max Marks: 10)0		L	Lab work & Sessional –			Assignment / Quiz/Attendance –			
Max Marks: 50 Max. Marks: 50									•		
Pre-Requisite	Knowledge of	ronce	erned	discir	line of Engi	neering					

Pre-Requisite	Knowledge of concerned discipline of Engineering.
	1. Identify literature and problem identification of research.
Course Outcome	2. Apply engineering principles through efficient handling of project.
	3. Identify appropriate techniques to analyze complex engineering problems.

Unit	Contents (Theory)	Marks Weightage
-	Pre- Dissertation: Students are required to select a topic of their interest in the third semester and prepare a dissertation on it. Mid semester presentation will include identification of the problem based on the literature review on the topic referring to latest literature available. End semester presentation should be done along with the report on identification of topic for the work and the methodology adopted involving scientific research, collection and analysis of data, determining solutions and must bring out individuals contribution. The student must submit a synopsis at the end of the semester for the approval from the Research Advisory Committee (RAC) in the specified format and submitted to the university for further Approval and give the power point presentation of the same for Evaluation/Approval.	300

Text Book/References Books/ Websites: - Nil