<u>PEOPLE'S UNIVERSITY, BHOPAL</u> (Applicable for Admitted from Academic Session 2019-20 onwards)

Programme: Master of Technology

Specialization: Thermal Engineering

Semester -II

Subject Code	Subject Title	Cr	edi	edit Theory					Practical			
	Environmental	L	Т	Р	E-town of	External (30)		tal 0)	External	Internal	Total	
MTTE12101	Control	3	1	-	External (70)			40 ade)	Nil	Nil	Nil	
Duration of	Theory (External	s): 3	H	ours	5							
Theory Inter	nal- Max Marks: 3	30	I	Best	of Two Mic	l Semester 7	Test-	Assignment/Quiz/Attendance-				
			I	Max Marks: 15					Max. Marks: 15			
Practical Internal Max Marks: Nil			Ι	Lab work & Sessional –				Assignment / Quiz/Attendance-				
				Max Marks: Nil Ma				Max	Max. Marks: Nil			

Pre-Requisite	Nil
Course Outcome	1. Identify the air pollutant control devices.
	2. Have knowledge on the NAAQ standards and air emission standards.
	3. Appreciate the methods of environmental sanitation and the management of community facilities without spread of epidemics.

Unit	Contents (Theory)	Marks
Omt	contents (<i>Theory</i>)	Weightage
	Air Pollution:-Sources and Effects – Definition and Concentrations, Classification and	
	Properties of Air Pollutants, Emission Sources, Major Emissions from Global Sources,	14
	Importance of Anthropogenic Sources, Photochemical Smog, Effects Of Air Pollution On	
I	Health, Vegetation And Materials Damages. Air Pollution Sampling And Measurement –	
	Types Of Pollutant Sampling And Measurement, Ambient Air Sampling, Collection Of	
	Gaseous Air Pollutants, Collection Of Particulate Pollutants, Stack Sampling, Analysis Of	
	Air Pollutants; Air Pollution Control Methods And Equipment.	
	Fundamentals Of Environmental Management: ISO 14000 Series: Background And	
II	Development Of ISO 14000 Series. Environmental Management Plans, Principles And	14
	Elements; The ISO 14001- Environmental Management Systems Standard. Environmental	
-	Law In India.	
	Solid And Hazardous wastes : Sources Need For Solid And Hazardous waste	
	Management; Municipal Solid wastes Collection Handling And Segregation Of wastes	14
тт	At Source - Storage And Conection Of Municipal Solid Wastes - Analysis Of Conection Systems: Labeling and Handling Of Hezerdous Wastes Waste Processing - Processing	
111	Technologies Biological And Chemical Conversion Technologies Composing	
	Thermal Conversion Technologies - Energy Recovery-Incineration - Solidification And	
	Stabilization of Hazardous Wastes - Treatment of Riomedical Wastes	
	Solid Wastes Disposal In Landfills Site Selection - Design And Operation Of Sanitary	
	Landfills- Secure Landfills And Landfill Bioreactors And Landfill Gas Management -	14
IV	Landfill Closure And Environmental Monitoring - Landfill Remediation Elements Of	14
	Integrated Waste Management.	
	Air Pollution:-Sources And Effects – Definition And Concentrations, Classification And	
	Properties Of Air Pollutants, Emission Sources, Major Emissions From Global Sources,	14
	Importance Of Anthropogenic Sources, Photochemical Smog, Effects Of Air Pollution On	
V	Health, Vegetation And Materials Damages. Air Pollution Sampling And Measurement –	
	Types Of Pollutant Sampling And Measurement, Ambient Air Sampling, Collection Of	
	Gaseous Air Pollutants, Collection Of Particulate Pollutants, Stack Sampling, Analysis Of	
	Air Pollutants; Air Pollution Control Methods And Equipment.	

<u>PEOPLE'S UNIVERSITY, BHOPAL</u> (Applicable for Admitted from Academic Session 2019-20 onwards)

Programme: Master of Technology Specialization: Thermal Engineering

Semester -II

Text Book/References Books/ Websites:

- 1. F Ruth, Weiner and Robin Matthews; W Environmental Engineering; Elesevier Publications.
- 2. J.G. Henry and G.W. Heinke: Environmental Science and Engineering; Pearson Education.
- 3. Mackenzie L Davis & David A Cornwell; Environmental Engineering; McGraw Hill Publishing Publications.
- 4. G.M Manster; Introduction to Engineering and Science, 2nd ed; Pearson Publishers Edward.
- 5. S.P Mahajan; Pollution Control in Process Industries; Tata McGraw-Hill, 1985.

Suggested List of Laboratory Experiments :- (Expandable): Nil

ouleoric

<u>PEOPLE'S UNIVERSITY, BHOPAL</u> (Applicable for Admitted from Academic Session 2019-20 onwards)

Programme: Master of Technology

Specialization: Thermal Engineering

Semester –II

Subject Code	Subject Title	(Credit			Theory		P	Practical		
MTTE13013	Solar Energy	L	Т	Р	External	Internal	Total (100)	External	Internal	Total	
MITE12012	Technology	3	1	-	(70)	(30)	Min: 40 (D Grade)	Nil	Nil	Nil	
Duration of Theory (Externals): 3 Hours											
Theory Interna	l- Max Marks: 30)		В	est of Two N	st of Two Mid Semester Test – A			ssignment/Quiz/Attendance		
				Ν	Iax Marks: 1	5]	/lax. Marks: 15			
Practical Intern	nal Max Marks: N	Nil		L	ab work & S	essional –	Assignment / Quiz/Attendance				
				Ν	Iax Marks: N	Jil	Max. Marks: Nil				
Pre-Requisit	e Nil	Nil									
Course Outcon	e 1. To know t	1. To know the concept of solar radiation and principle of measuring instruments.									
	2. To know t	2. To know the various applications of solar thermal energy.									
	3.To underst	3. To understand the life cycle analysis method and uncertainties in solar economic analysis							is		

Unit	Contents (Theory)	Marks Weightage
Ι	Solar Radiation : Source of Radiation, Solar Radiation geometry Solar Radiation measuring instruments, solar constant, Solar Radiation on tilted surface, solar chart.	14
п	Solar Concentrating Collectors: Optical and Thermal Analysis of Parabolic Collectors, Optical and Thermal Analysis of Parabolic through collectors, second law analysis, Minimum Entropy Generation rate, Optimum Collector Temperature, Non-Isothermal Collector, Solar Non-Concentrating Collectors, Design Consideration.	14
ш	Performance of Solar Collectors; Collector Thermal Efficiency, Collector Energy Losses, Collector Incident Angle Modifier, Concentrating Collector Acceptance Angle, Collector Time Constant, Dynamic System Test Method, Collector Test Resulta And Preliminary Collector Selection, Quality Test Methods, Analysis of Concentric Tube Collector.	14
IV	Solar Thermal Applications : selection Criteria of storage Materials for Heating and Cooling applications, selection of Heat Transfer Fluid for Heating and Cooling Applications, active passive Solar Water Heating System, Solar Space Heating, Solar Cooling with Absorption and Adsorption Refrigeration, Solar Desalination, Solar Powered Absorption Air Conditioning System, Solar Irrigation System, Solar Chimney, Drier, Dehumidifier, Solar Still.	14
v	Solar Thermal Power System: Parabolic through Collector System, Solar Tower System, Dish Systems, Thermal Analysis of solar Thermal Power Plants, Solar Ponds.	14

Text Book/References Books/ Websites:

- 1. Duffie J A, Beckman W A Solar Engineering of Thermal Processes; Wiley Publications.
- 2. Soteris A Kalogirou: Solar Energy Engineering Process and Systems; Academic Press Publications
- 3. **S P Su**khatme; Solar Energy Principles of Thermal Collection and Storage; Taylor and Francis Publications
- 4. H P Garg & Jai Prakash; Solar Energy: Fundamentals and Applications; McGraw Hill
- 5. Edward E Anderson ; Fundamentals for solar energy conversion; Wesley Publ. Co.

<u>PEOPLE'S UNIVERSITY, BHOPAL</u> (Applicable for Admitted from Academic Session 2019-20 onwards)

Programme: Master of Technology

Specialization: Thermal Engineering

Semester –II

Subject Code	Subject Title	0	Cred	it	Theory			Practical		
		L	Т	Р	Entornal	Intornal	Total (100)	External	Internal	Total
MTTE12013	Gas Dynamics				External	(30)	Min: 40	Nil	Nil	Nil
		3	1	-	(70)		(D			
							Grade)			
Duration of	Theory (Externa	ls): 3	3 Ho	urs						
Theory Interna	ll- Max Marks: 30)		B	Best of Two Mid Semester Test –			Assignment/Quiz/Attendance		
				Ν	Max Marks: 15			Max. Marks: 15		
Practical Inter	nal Max Marks: N	Nil		L	Lab work & Sessional –			Assignment / Quiz/Attendance		
				Ν	Max Marks: Nil			Max. Marks: Nil		
Pre-Requisite Thermodynamics and fluid mechanics										
a b i	1 41 11.	1		1						

Pre-Requisite	Thermodynamics and fluid mechanics
Course Outcome	1. Ability to understand various fluids flows with analysis of Heat Addition.
	2. To understand the working of various systems related to gas dynamics and different thermal
	processes.

Unit	Contents (Theory)	Marks
		Weightage
	Fundamental Aspects of Gas Dynamics: Introduction, Isentropic flow in a stream tube, speed	
Ι	of Sound, Mach Waves; One Dimensional Isentropic Flow: Governing Equations, Stagnation	14
	Conditions, Critical Conditions, Maximum Discharge Velocity, Isentropic Relations.	
	Normal Shock Waves: Shock waves, stationary normal shock waves, normal shock wave	
	relations in terms of Mach number; Oblique Shock Waves: Oblique shock wave relations,	
II	reflection of oblique shock waves, interaction of Oblique Shock Waves, Conical Shock Waves;	14
	Expansion Waves: Prandtl-Meyer flow, reflection and interaction of expansion waves, flow	
	over bodies involving shock and expansion waves.	
	Variable Area Flow: Equations for Variable Area Flow, Operating Characteristics of Nozzles,	
III	Convergent-Divergent Supersonic Diffusers, Adiabatic Flow in a Duct with Friction: Flow in a	14
	constant area duct, friction factor variations, and the Fanno line.	
	Flow with Heat Addition or Removal: One-dimensional flow in a constant area duct	
	neglecting viscosity, variable area flow with heat addition, One-Dimensional Constant Area	
IV	Flow with both heat exchanger and friction, Generalized Quasi-One-Dimensional Flow:	14
	Governing equations and influence coefficients, solution procedure for generalized flow with	
	and without some point.	
	Two-Dimensional Compressible Flow: Governing Equations, Vorticity Considerations, the	
V	Velocity Potential, Linearized Solutions, Linearized Subsonic Flow, Linearized Supersonic	14
	Flow, method of characteristics.	

Text Book/References Books/ Websites:

1. H.W. Liepmann, and A. Roshko, Elements of Gas Dynamics, Dover Pub, 2001 :

2. L.D.Landau and E..M.Lifshitz, Fluid Mechanics. 2nd ed., Butterworth-Heinemann, 1995

- 3. P. H. Oosthuizen and W. E. Carscallen. Compressible Fluid Flow. NY, McGraw-Hill, 1997
- 4. M.A.Saad:Compressible Fluid Flow. 2nd ed. Upper Saddle River, NJ: Prentice-Hall, 1993

PEOPLE'S UNIVERSITY, BHOPAL (Applicable for Admitted from Academic Session 2019-20 onwards)

Programme: Master of Technology Specializat

Specialization: Thermal Engineering

Semester –II

Subject Code	Subject Title	0	Cred	it	Theory			Practical				
MTTE1202	Advanced Refrigeration	L	Т	Р	External	TotInternal(10)		otal 00)	External	Internal	Total	
MTTE1202	& Air Conditioning	3	1	-	(70)	(30)	Min: 40 (D Grade)		Nil	Nil	Nil	
Duration of Theory (Externals): 3 Hours												
Theory Interna	l- Max Marks: 30)	В	est o	f Two Mid S	emester Te	st –	Assig	ssignment/Quiz/Attendance			
			Μ	lax N	farks: 15 Max.			Marks: 15				
Practical Intern	nal Max Marks: N	Vil	L	Lab work & Sessional – Assig			Assig	ignment / Quiz Attendance				
			Μ	Max Marks: Nil M			Max.	1ax. Marks: Nil				
Pre-Requisite	e Thermodynamic knowledge is required.											
Course Outcom	ne <u>1. Understan</u>	1. Understand the various types of refrigeration systems and Psychometric.										

Learn the classification of refrigerants and its properties.
Understand about different controls relays and motors employee in refrigeration.

Unit	Contents (Theory)	Marks Weightage
Ι	Refrigeration Cycles Analysis: Carnot Cycle, Air Refrigeration Cycles, Vapor Compression Refrigeration Cycle from Basic - Analysis Multi pressure Systems, Cascade Systems.	14
II	Main system components: Compressors, Condensers, Evaporators - Types and performance, Expansion devices - types and selection.	14
III	Refrigerants Handling : Classification of Refrigerants, Refrigerant properties, Oil Compatibility, Environmental Impact - Montreal / Kyoto protocols - Eco Friendly Refrigerants.	14
IV	System Balancing & Controls: Estimation of Cooling Load, System Equilibrium, Balancing and matching of components, and Cycling Controls, Electric Circuits in - Refrigerators, Window A/C, Types of motors, Relays, Different Types of Refrigeration Tools, Evacuation and Charging Unit, Recovery and Recycling Unit, Vacuum Pumps	14
v	Unconventional Refrigeration Cycles : Vapor Absorption Systems - Aqua Ammonia & Li-br Systems, Steam Jet Refrigeration Thermo Electric Refrigeration	14

Text Book/References Books/Websites:

- 1. R.J Dossat; Principles of Refrigeration ; John Wiley, S.I. Version ,4th Edition , 2006..
- 2. W.F. Stoecker; Refrigeration and Air conditioning; McGraw-Hill Book Company, 1989.
- 3. Jordan and Priester; Refrigeration and Air Conditioning, 1985; McGraw-Hill Book
- 4. W.B Goshnay; Principles and Refrigeration; Cambridge, University Press, 1982.
- 5. Langley, Billy C; Solid state electronic controls for HVACR; Prentice-Hall 1989.

<u>PEOPLE'S UNIVERSITY, BHOPAL</u> (Applicable for Admitted from Academic Session 2019-20 onwards)

Programme: Master of Technology

Specialization: Thermal Engineering

Semester –II

Subject Code	Subject Title	Credit			Theory			Practical				
MTTE 1 302	ADVANCED	L	Т	Р	External	Internal	T (1	'otal 100)	External	Internal	Total	
MITEI203	TRANSFER	3	1	-	(70)	(30)	Min: 40 (D Grade)		Nil	Nil	Nil	
Duration of Theory (Externals): 3 Hours												
Theory Interna	l- Max Marks: 30)	Be	Best of Two Mid Semester Test – Ass					signment/Quiz/Attendance			
			Max Marks: 15 Max.					Max. N	Marks: 15			
Practical Intern	nal Max Marks: N	Nil	La	Lab work & Sessional – A					Assignment / Quiz/ Attendance			
				Max Marks: Nil Max					Marks: Nil			
Pre-Requisite Basics Knowledge of them					nodynamics.							

The Requisite	Dusies Iknowiedge of thermodynamics.			
Course Outcome	Understand the Concept of heat transfer.			
	Heat transfer by gasses .			
	Understand the working of heat transfer device.			
		• (

Unit	Contents (Theory)	Marks Weightage
Ι	Transient heat conduction, Exact solution, Use of Heisler and Grober chart, Integrated method.	14
II	Extended surfaces, Steady state analysis and optimization, Radial fins of rectangular and Hyperbolic profiles, longitudinal fin of rectangular profile radiating to free space	14
III	Thermal boundary layers, Momentum and energy equations, Internal and external flows, Forced convection over cylinders, spheres and bank of tubes.	14
IV	Heat transfer with phase change, condensation and boiling heat transfer, Heat transfer in condensation, Effect of non, condensable gases in condensing equipments. Flow boiling correlations.	14
v	Radiative exchange in furnaces, Radiation characteristics of particle systems, Thermal radiation of a luminous fuel oil and gas, Soot flame, overall heat transfer in furnaces.	14

Text Book/References Books/ Websites:

- 1. R.S Khurmi ; Heat and mass transfer ; S Chand Publications.
- 2. R.K Rajput; Heat and mass transfer; Laxmi Publications
- 3. C P Arora ; Heat transfer ; Laxmi Publications
- 4. H P Garg & Jai Prakash; Heat and mass transfer; McGraw Hill
- 5. Edward E Anderson ; Heat and mass transfer ; Wesley Publ. Co.

<u>PEOPLE'S UNIVERSITY, BHOPAL</u> (Applicable for Admitted from Academic Session 2019-20 onwards)

Programme: Master of Technology

Specialization: Thermal Engineering

Semester –II

Subject Code	Subject Title	ubject Title Credi				t Theory					Practical		
MTTE1204	Computation	L	Т	Р	PExternalTotalExternalInternal(100)		al))	External	Internal	Total			
	Fluid Dynamics	3	3 1 - (70)		(70)	(30)	Min: (D Gra	40 ade)	Nil	Nil	Nil		
Duration of Theory (Externals): 3 Hours													
Theory Internal- Max Marks: 30Best of Two Mid Semester Test –Assignment/Quiz/Attendance-							e-						
				Ma	x Marks: 15			Max	Marks: 15	\mathbf{N}			
Practical Inter	rnal Max Marks: N	Nil		Lał	o work & Ses	sional –		Assig	gnment / Qui	iz/Attendan	ce		
				Max Marks: Nil Max. Marks: Nil									
	-												
Pre-Requisi	te Nil												
	1. To under	stand	l abo	ut ba	asic concept of	of waste ma	nagemen	t.	<u>V</u> V				
Course Outco	me 2. To under	stanc	l abo	out re	ecycling of va	rious waste	s.		Ū				
	3. To under	stand	l abo	ut w	aste collectio	n, handling	and disp	osal.					

Unit	Contents (Theory)	Marks
		Weightage
Ι	Introduction: Need; Strategy of CFD modeling in engineering; CFD simulations, Types of Flow- Laminar flow, Turbulent flow, Single-phase flow, Multiphase flow, Introduction of CFD programs. Future of CFD - design process; Applications of Computational Fluid Dynamics.	14
II	Methods of Solution: Solution of Finite Difference Equations; Iterative Methods; Matrix Inversion Methods; ADI Method; Operator Splitting; Fast Fourier Transform. Model Equations, Wave Equations, Stability Analysis; Advanced Shock Capturing Schemes.	14
III	Finite-Volume Methods: Basic Concepts; Model Equations in Integral Form ; The Linear Convection Equation; Diffusion Equation ; One-Dimensional Examples ; A Second-Order Approximation to the Convection Equation ; A Second-Order Approximation to the Diffusion Equation. Modeling: Equation of continuity; Equation of Motion ; Boundary Conditions: Inlet and outlet boundaries ; Wall boundaries ;Symmetry and axis boundary conditions ; Initial conditions ; Domain settings ; Physical properties ; equation of state.	14
IV	Numerical Aspects of CFD : The Gauss–Seidel algorithm; Gauss–Seidel; Measures of convergence; Discretization schemes; Boundedness and transportiveness ; Taylor expansions ; Accuracy; Hybrid scheme; Power-law scheme; More advanced discretization schemes ; Solving the velocity field ; Under-relaxation ;Multi grid ; Unsteady flows ; time-dependent simulation; Conclusions on the different time discretization methods ; Meshing ; Mesh generation ;Adaptation; Numerical diffusion.	14
V	Navier-Stokes Equations: Introduction - Governing equations - Difficulties in solving Navier- Stokes equation - Stream function - Vorticity method - In viscid flow (steady) - Determination of pressure for viscous flow; Explicit and Implicit Methods; Numerical Solution of Hyperbolic Equations, Solution of parabolic flow problems.	14

Text Book/References Books/ Websites:

- 1. J. H Ferziger and M. Peric; Computational Methods for Fluid Dynamics; Springer-Verlag, Berlin.
- 2. H. K Versteeg and W Malalasekara; Introduction to Computational Fluid Dynamics: The Finite Volume Method. Second Edition (Indian Reprint) Pearson Education.
- 3. J.D. Anderson, Jr., Computational Fluid Dynamics: The Basic with Applications, McGraw Hill, Inc.,
- 4. http://ingegneriaterni.altervista.org/wp-content/uploads/2016/06/BOOK-Bengt-Andersson-et-al-Computational-fluid-dynamics-for-engineers-2012/

Suggested List of Laboratory Experiments (Expandable): Nil

School of Research and Technology

<u>PEOPLE'S UNIVERSITY, BHOPAL</u> (Applicable for Admitted from Academic Session 2019-20 onwards)

Programme: Master of Technology

Specialization: Thermal Engineering

Semester –II

Max. Marks: Nil

Subject Code	Subject Title	0	Cred	it	Theory			Practical		
MTTE1205	Energy Conservation Management & Audit	L	Т	Р	Futomol	Intornal	Total (100)	External	Internal	Total
MTTE1205		3	1	-	External (70)	(30)	Min: 40 (D Grade)	Nil	Nil	Nil
Duration of	Duration of Theory (Externals): 3 Hours									
Theory Internal- Max Marks: 30				B	Best of Two N	/lid Semeste	er Test –	Assignment/Quiz/Attendance-		
					Max Marks: 15			Max. Marks: 15		
Practical Internal Max Marks: Nil				Ι	Lab work & Sessional –			Assignment / Ouiz/Attendance-		

Pre-Requisite	Nil
	1. To impart knowledge in the domain of energy conservation.
	2. To bring out Energy Conservation Potential and Business opportunities across different user
Course Outcome	segments under innovative business models.
	3. To inculcate knowledge and skills about assessing the energy efficiency of an entity/
	establishment.

Max Marks: Nil

Unit	Contents (Theory)	Marks Weightage
I	Energy Scenario, Basics of Energy and its various forms, Energy Management and, Audit, Material and Energy Balance, Energy Action Planning, Financial Management, Project Management, Energy Monitoring and Targeting, Global Environmental Concerns.	14
Π	Energy Efficiency in Thermal Utilities, Fuels and Combustion, Boilers, Steam System, Furnaces, Insulation and Refractory, FBC Boilers, Cogeneration, Waste heat recovery.	14
ш	Energy Efficiency in Electrical Utilities, Electrical Systems, Electric Motors, Compressed Air System, HVAC and Refrigeration System, Fans and Blowers, Pumps and Pumping System, Cooling Tower, Lighting System, Diesel Generating System, Energy Efficient Technologies in Electrical Systems	14
IV	Energy Performance Assessment for Equipment and Utility systems, Boilers, Furnaces, Cogeneration, Turbines (Gas, Steam), Heat Exchangers, Electric Motors and Variable Speed, Drives, Fans and Blowers, Water Pumps, Compressors.	14
v	HVAC Systems, Lighting Systems, Performing Financial Analysis, Applications of Non, Conventional and Renewable Energy Sources, Waste Minimization and Resource Conservation	14

Text Book/References Books/ Websites:

- 1. L.C.Witte, P.S.Schmidt, D.R. Brown, "Industrial Energy Management and Utilization" Hemisphere Publication, Washington.
- 2. P.W. Callaghn,; Design and Management for Energy Conservation, Pergamon Press, Oxford.
- 3. I.G.C.Dryden.; The Efficient Use of Energy; Butterworths, London.
- 4. W.C.Turner.; Energy Management Hand book; Wiley, New York.
- 5. W.R. Murph and G. Mc KAY; Energy Management; Butterworths, London.

<u>PEOPLE'S UNIVERSITY, BHOPAL</u> (Applicable for Admitted from Academic Session 2019-20 onwards)

Programme: Master of Technology

Specialization: Thermal Engineering

Semester –II

Subject Code	S	Subject Title Credit Theory							Practical				
MTTE1304	Refi	Refrigeration &	L	Т	Р	External	Internal	Total	Evto	nnal Intorna		Total (100)	
M11E1206	Air Conditioning. Lab	-	-	2	(Nil)	(Nil)	Nil	(70)		(30)	Min: 40 (D Grade)		
Duration of Theory (Externals): Nil													
Theory Internal- Max Marks: Nil Best of Two Mid Semester Test – Assignment/Quiz/Attendance						Attendance-							
					N	lax Marks: N	Jil			Max. N	/larks: Nil		
Practical Inter	rnal N	Iax Marks: 30			L	Lab work & Sessional – Assignment Quiz(Att				Attendance			
					Max Marks:15 Max. Marks: 15								
		X 714							•				
Pre-Requisite		Nil											
		1. Understand	the v	vario	us t	ypes of refrig	geration sys	stems and	d Psyc	hometr	ic.		
Course Outco	ome	2. Learn the classification of refrigerants and its properties											
	-	3. Understand	abo	ut di	ffer	ent controls	relays and r	notors e	mploye	nployee in refrigeration.			

Unit	Contents (Theory)	Marks Weightage
	Students will study the Refrigeration & Air Conditioning system. It is playing an important role in all sectors of industry, commerce and household usage. A domestic refrigerator or any refrigeration plants work on the vapour compression cycle.	100

Text Book/References Books/ Websites:

- 1. Experiment on Determination of COP of Refrigeration.
- 2. Experiment on Determination of COP for Heat pump.
- 3. Experiment of Determination of COP for Vapour absorption Refrigeration.
- 4. Experiment of Determination of COP for Thermoelectric Refrigeration-
- 5. Determination of COP for Room air conditioner.
- 6. Demonstration of frost free refrigerator.
- 7. Demonstration of conventional Refrigerator.
- 8. Study and demonstration of types of compressors.
- 9. Study and demonstration of types of condensers.
- 10. Study and demonstration of types of evaporators.

<u>PEOPLE'S UNIVERSITY, BHOPAL</u> (Applicable for Admitted from Academic Session 2019-20 onwards)

Programme: Master of Technology

Specialization: Thermal Engineering

Semester –II

Subject Code	Subject Title	ubject Title Credit				Theory		Practical		
	Computation	L	Т	Р	External	Total Internal		Extornol	Intornal	Total (100)
MTTE1207	Fluid Dynamics Lab	-	-	2	(Nil)	(Nil)	Nil	(70)	(30)	Min: 40 (D Grade)
Duration of Theory (Externals): Nil										
Theory Intern	al- Max Marks: N	il		В	Sest of Two N	/lid Semeste	er Test –	Assignm	ent/Quiz/A	ttendance
				Ν	Iax Marks: N	Jil		Max. Ma	urks: Nil	
Practical Inter	rnal Max Marks: 3	60		L	ab work & S.	essional –		Assignm	ent / Quiz/	Attendance
	Max Marks: 15 Max. Marks: 15							•		
Pre-Requisite	Nil	Nil								
Course Outco	me 1. Stud	1. Students will be able to solve complex problem of thermal system.								
	2 Stud	2 Students will able to design thermal system								

Unit	Contents (Theory)	Marks Weightage
	The focus of this lab is computational fluid dynamics (CFD). It involved in both development, and application of algorithms for fluid flow and heat transfer.	100

Text Book/References Books/ Websites:

- 1. Calculation of flow in a rectangular duct.
- 2. Calculation of fully developed flow in a triangular duct.
- 3. Equations for incompressible flow and boundary conditions.
- 4. Study of basic concepts of Finite difference approximations.
- 5. Solution of Navier Stokes for compressible flows.
- 6. Solution of Navier Stokes equations for incompressible flows.
- 7. Solution of linear algebraic equations by using basic methods.
- 8. Basics of finite volume method including grid generation.
- 9. Turbulent flows and turbulence modeling.

<u>PEOPLE'S UNIVERSITY, BHOPAL</u> (Applicable for Admitted from Academic Session 2019-20 onwards)

Programme: Master of Technology

Specialization: Thermal Engineering

Semester –II

Subject Code	Subject Title	0	Cred	it	Theory			Practical		
MT1200	Audit Course - II (English For	L	Т	Р	External	Internal	Total (50)	External	Internal	Total
MT1208	Research Paper Writing)	2	-	-	(35)	(15)	Min: 20 (D Grade)	Nil	Nil	Nil
Duration	n of Theory (Externa	ls): 2	2 Ho	urs						
Theory Inter	rnal- Max Marks: 15	5		В	Best of Two Mid Semester Test –			Assignment/Quiz/Attendance		
					Max Marks: Nil			Max. Marks: 15		
Practical Internal Max Marks: Nil				L	Lab work & Sessional –			Assignment / Quiz		
				Ν	Max Marks: Nil			Max. Marks: Nil		

Pre-Requisite	Nil
Course Outcome	1. Student will understand that how to improve your writing skills and level of readability.
Course Outcome	2. Learn about what to write in each section of research article.
	3. Understand the skills needed when writing a Title.

Unit	Contents (Theory)	Marks Weightage
I	Planning and Preparation; Word Order; Breaking up long sentences; Structuring Paragraphs and Sentences; Being Concise and Removing; Redundancy; Avoiding Ambiguity and Vagueness.	07
II	Clarifying Who Did What; Highlighting Your Findings; Hedging and Criticizing; Paraphrasing and Plagiarism; Sections of a Paper; Abstracts; Introduction.	07
III	Review of the Literature; Methods; Results; Discussion; Conclusions; The Final Check.	07
IV	Key skills are needed when writing a Title; key skills are needed when writing an Abstract; key skills are needed when writing an Introduction; skills needed when writing a Review of the Literature.	07
v	Skills are needed when writing the Methods; skills needed when writing the Results; skills are needed when writing the Discussion; skills are needed when writing the Conclusions; useful phrases; how to ensure paper is as good as it could possibly be the first-time submission	07

Text Book/References Books/ Websites:

- 1. R. Goldbort (2006) Writing for Science; Yale University Press (available on Google Books).
- 2. R. Day (2006) How to Write and Publish a Scientific Paper; Cambridge University Press
- 3. N Highman (1998); Handbook of Writing for the Mathematical Sciences; SIAM. Highman's book
- 4. Adrian Wallwork ; English for Writing Research Papers; Springer New York Dordrecht Heidelberg London; 2011