<u>PEOPLE'S UNIVERSITY, BHOPAL</u> (Applicable for Admitted from Academic Session 2019-20 onwards)

Pr	ograr	nme: N	laster of Te	echno	ology		Specialization: Production Engineering Seme					ter –III
Subj	ect Io	Subj	ject Title		Credi	it		Theory			Practica	ıl
				L	Т	Р	External	Internal	Total (100)	External	Interna	l Total
MT3	101	Indust	crial Safety	3	1	-	(70)	(30)	Min: 40 (D Grade)	Nil	Nil	Nil
Dı	ıratio	n of Th	eory (Exter	nals)	: 3 H	ours	8					
Theor	y Inte	ernal- N	Iax Marks:	30			Best of Two Max Marks:	Sest of Two Mid Semester TestAssignment/Quiz/AMax Marks: 15Max. Marks: 15				
Practi	ical In	iternal I	Max Marks	: Nil			Lab work & Max Marks:	Sessional Nil	_	Assignmer Max. Mark	nt / Quiz/. (s: Nil	Attendance-
Pre-R	Requi	site	Functionin	g of]	Engir	neeri	ng equipment	ts and indus	stry work cult	ure.		
	-		1.Student	shou	ld ab	le to	apply standa	rd safety pr	ocedures in a	n industrial o	environm	ent.
Cour	2. An ability to identify, formulate, and solve broadly-defined technical or scientic						fic problems					
Cours	by applying knowledge of mathematics and science and/or technical topics to areas						s relevant to					
	the safety.											
Unit	Contents (Theory)						Marks Weightage					
	Introduction to Industrial Safety: History and development of safety movement, Need for											
	safety, Safety legislation: Acts and rules, Safety standards and codes, Safety policy: safety											
-	organization and responsibilities and authorities of different levels. Accident sequence theory,											
I	Caus	es of ac	cidents, Acc	s and investigation of accidents. First aid Financial costs-direct and indirect social								14
	salety	y Analys	vidents Cor	mpilation procedure for financial costs Cost data quality and its								
	limita	ations-B	udgeting.	npna	lion	proc	edure for in		515. Cost du	a, quanty o	and no	
	Haza	rds Ide	entification:	Pro	cess	Haz	ards Checklis	sts, Hazard	ls Surveys, H	Iazard Tech	niques,	
	Haza	rds and	Operability	(HA	AZOF	P) St	udies, Mecha	anical haza	rds; Machine	e Guarding,	Safety	
п	with	hand too	ols/ portable	powe	er too	ls.						14
	Risk	Assess	ment: Revie	ew of	Prob	abil	ity Theory, E	vent Trees,	Fault Trees	Analysis, QI	RA and	
	LOP	A, Risk	Estimation a	nd N	lanag	eme	nt, Major haz	ard control	, On-site and	Off-site eme	ergency	
	Indu	strial H	, muustriai v Ivgiene: Go	vernr	nent	lage	nient. s and Regula	tions OSH	A. Process S	afety Manao	rement	
	EPA:	Risk I	Management	t Pla	n. DI	HS:	Chemical Fa	cility Anti	-Terrorism S	tandards (C	(FATS)	
	Indus	strial Hy	giene: Antic	ipati	on an	d Id	entification, E	Evaluation,	Control.	× ×	,	14
111	Sour	ce Mod	els: Introduc	ction	to So	urce	Models, Flo	w of Liquid	l through Hol	es, and Pipe	s, Flow	14
	of G	ases or	Vapors thro	ough	Hole	s an	d Pipes, Flas	shing Liqui	ds, Liquid Po	ool Evapora	tion or	
	Boili	ng, Con	servative Ar	alysi	S.		Friencle Die	tingtion h	otrono Einer	and Errel		
	Pires and Explosions: The Fire Triangle, Distinction between Fires and Explosions, Definitions, Hammability, Characteristics, of Liquids, and Vapors, Limiting, Oxygen											
	Concentration and Inerting, Flammability Diagram, Ignition Energy, Autoignition, Auto-											
IV	Oxid	ation, A	diabatic Co	mpre	ssion	, Ign	ition Sources	, Sprays an	d Mists, Expl	osions.	1 Iuto	14
	Conc	epts to	Prevent l	Fires	and	Ex	plosions: In	erting, Stat	tic Electricity	y and its C	Control,	
	Explo	osion-Pr	oof Equipm	nent a	and I	nstr	uments, Vent	tilation, Sp	rinkler Syste	ms, Miscell	aneous	
	Conc	epts for	Preventing	Fires	and I	Expl	osions.		1.1 •			
	Occu	pationa	al Health :	Occi	ipatic	mal	Health: Cor	ncept of h	ealth and or	cupational	health,	
V	V Spectrum of health, Occupational and work related diseases, Levels of prevention, History of					14						
	servi	ce, perso	onal protecti	ve ea	uipm	ents	(respiratory a	and non-res	piratory)	secupational	incartii	
		- , perse	r prototti		P-111		(r			

<u>PEOPLE'S UNIVERSITY, BHOPAL</u> (Applicable for Admitted from Academic Session 2019-20 onwards)

Programme: Master of Technology Specialization: Production Engineering

Semester –III

Text Book/References Books/ Websites:

1 H.H. Fawcett and W.S.Wood, Safety and Accident Prevention in Chemical Operations 2nd editon John Wiley and Sons Inc. (1982).

ovedtion

2. H. P. Garg ; Maintenance Engineering; S. Chand and Company.

3. Audels ; Pump-hydraulic Compressors; Mcgrew Hill Publication.

4. Winterkorn; Foundation Engineering Handbook Hans; Chapman & Hall London

<u>PEOPLE'S UNIVERSITY, BHOPAL</u> (Applicable for Admitted from Academic Session 2019-20 onwards)

Programme: Master of Technology

Specialization: Production Engineering

Semester –III

Sub Co	ject de	Subject Title Credit Theory Practical									1	
NATIO	100	TT 7	4 T	L	Т	Р	External	Internal	Total (100)	External	Interna	al Total
MIS	5102	waste	to Energy	3	1	-	(70)	(30)	Min: 40 (D Grade)	Nil	Nil	Nil
D	uratio	n of Th	eory (Exter	nals): 3 I	Iou	rs					
Theo	ry Inte	rnal-M	ax Marks: (30			Best of Two	Mid Semes	ster Test –	Assignment	/Quiz/At	tendance-
							Max Marks:	: 15		Max. Marks	: 15	
Pract	ical In	ternal I	Max Marks	: Ni	l		Lab work &	Sessional	_	Assignment	/ Quiz/A	ttendance-
							Max Marks:	Nil		Max. Marks	: Nil	
	Poquisita Nil											
Pre-J	Requisite Nil											
a	0		1. Student should able to apply the knowledge about the operations of Waste to Energy									
Cour	se Ou	tcome	2. Apply the knowledge in planning and operations of Waste to Energy plants.									
			3. Able to analyze the various aspects of Waste to Energy Management Systems.									
∐nit				Contents (Theory)								
CIIII	.											Weightage
	Introduction to Energy from Waste: Classification of waster agro based, forest residues,											
T	aomes	uc was	tion: Convo	I We	iste (naza	Incinorato	on-nazardou	digostors :W	Zation of wa	tion in	14
1	differe	nt secto	ors i.e. dom	estic	ind	ustri	ial agricultur	re postconsi	mer waste e	te Waste Se	election	14
	criteria	a.	715 1. C . doin	Conc	, 1110	usui		e, posteons	unior wuste e	ie. Wuble Be	lection	
	Techn	ologies	for Waste	to E	nerg	y Bi	ochemical C	onversion -	- Energy prod	uction from o	organic	
II	waste	through	anaerobic d	iges	tion	and f	fermentation.	Thermo-che	emical Conver	rsion – Comb	oustion,	14
	Incine	ration a	nd heat recov	very	, Pyr	olysi	is, Gasificatio	n; Plasma A	rc Technolog	у.		
	Waste	to Ene	ergy Option	s: L	andfi	ill ga	as, collection	and recover	ry. Refuse De	rived Fuel (F	RDF) –	
	fluff, l	oriquette	es, pellets. A	Alter	nate	Fuel	Resource (A	(FR) - prod	uction and us	e in Cement	plants,	
III	Therm	al powe	er plants an	d In	dustr	ial t	Dilers. Conv	ersion of w	astes to fuel	resources for	r other	14
		energy	applications	. En	fron		astes and or	les – Non-re	of its use	le wastes for	energy	
	standa	rdizatio	n	Cry	non	VV.	astes and of	pumization	of its use,	UCHCHIHAI KII	ig and	
	Centr	alized a	nd Decentr	aliz	ed W	aste	e to Energy l	Plants: colle	ection, segreg	ation, transpo	ortation	
	and st	orage re	equirements	. Lo	catio	n ar	nd Siting of	'Waste to H	Energy' plants	s. Industry S	pecific	
IV	Applic	ations -	- In-house	use	– sug	gar,	distillery, ph	armaceutica	ls, Pulp and	paper, refine	ery and	14
	petroc	hemical	industry an	d an	y oth	er in	ndustry. Cent	ralized and 1	Decentralized	Energy prod	uction,	
	distrib	ution an	id use. Comp	paris	on of	Cei	ntralized and	decentralize	d systems and	its operation	s.	
	Waste	To E	nergy & E	nvi	ronm	enta	al Implicatio	ons: Enviror	nmental stand	lards for Wa	aste to	
N 7	Energy	y Plant	operations	and	gas	cle	an-up;Saving	s on non-r	enewable fue	I resources;	Clobal	14
v	Credit Bact I	s: Carbo	in Waste	to a	ons ai		aroon credits i	Luse India	namsins;Ener	gy Analysis; h Wasta ta 1	Global	14
	production distribution and use in India. Role of the Government in promoting 'Waste to Energy'											
т	prouu ovt Do	ok/Dofo	rances Real	ra/1	Wob	itos		Soverminelli	in promoting		iergy .	

- 1. Industrial and Urban Waste Management in India; TERI Press.
- 2. Banwari Lal and Patwardhan; Wealth from Waste: Trends and Technologies; TERI Press.
- 3. S.N Mukhopadhyay; Fundamentals of waste and Environmental Engineering; TERI Press.
- 4. www.envfor.nic.in www.cpcb.nic.in
- 5. <u>www.eai.in/ref/ae/wte/typ/clas/india_industrial_wastes.html</u>
- 6. www.teriin.org/projects/green/pdf/National-Waste.pdf
 - Suggested List of Laboratory Experiments (Expandable): Nil

School of Research and Technology

Department: Mechanical Engineering

<u>PEOPLE'S UNIVERSITY, BHOPAL</u> (Applicable for Admitted from Academic Session 2019-20 onwards)

Programme: Master of Technology

Specialization: Production Engineering

Semester –III

C-1:	4	Subject Title										
Subje	ect le	Subj	ject Title	0	Cred	it		Theory			Practical	
		Mana	Cost gement of	L	Т	Р	External	Internal	Total (100)	External	Internal	Total
MT3	103	Eng Pi	ineering rojects	3	1	-	(70)	(30)	Min: 40 (D Grade)	Nil	Nil	Nil
Du	ratio	n of Th	eory (Exter	nals):3	Hou	rs		•			
Theor	y Inte	ernal-M	lax Marks:	30			Best of T	wo Mid Sem	ester Test –	Assignme	nt/Quiz/Att	endance-
							Max Marl	ks: 15		Max. Mar	ks: 15	
Practi	cal In	ternal I	Max Marks	: Ni	l		Lab work	& Sessional	_	Assignme	nt / Quiz/A	ttendance-
							Max Marl	ks: Nil		Max. Mar	ks: Nil	
Pre-R	equisite Nil											
110-K	cqui	equisite 1811									orth and an	nual worth
G	0		analyses	s on	one	of m	ore econom	ic alternativ	es.	in, future w		
Cours	se Out	e Outcome 2. Able to carry out and evaluate benefit/cost, life cycle and Breakeven analyses on									alyses on o	ne or more
	economic alternatives.									•		
.											Marks	
Unit	it Contents (Theory)									Veightage		
	Intro	duction	and Over	view	of	the	Strategic (Cost Manag	ement Proces	s Cost cond	cepts in	
Ι	decis	sion-ma	king; Relev	ant	cos	t; D	ifferential c	ost; Increm	ental cost and	d Opportuni	ty cost.	14
	Cont	rol Pro	of a Costing	s Syr a fo	stem r De	i; Inv cisio	n-Making	lation; Creat	tion of a Data	base for ope	erational	
	Proje	ect: me	aning; Diffe	rent	typ	es; v	why to man	age; cost o	verruns center	s; various s	tages of	
	proje	ect exe	cution: con	cepti	ion	to c	ommissioni	ng. Project	execution as	conglomera	ation of	
п	tech	nical ar	nd nontechn	ical	acti	vitie	s. Detailed	Engineering	g activities. Pi	re project ex	xecution	14
	mair	ı cleara	nces and do	cum	ents	Pro	ject team: F	ole of each	member. Imp	ortance Proj	ect site:	
	Data	requir	control Bar	nifi cha	canc	e. P nd N	roject conti	acts. Types	and contents	s. Project ex	xecution	
	Proi	ect com	missioning:	me	chan	ical	and process	Cost Beha	vior and Profi	t Planning N	/Iarginal	
TTT	Cost	ing; Di	stinction bet	wee	n M	argir	al Costing	and Absorpt	ion Costing; B	Break-even A	analysis;	14
111	Cost	-Volum	ne-Profit Ar	nalys	sis.	Vari	ous decisio	on-making]	problems. Sta	ndard Costi	ing and	14
	Variance Analysis.											
	Prici	ing stra	tegies: Pare	to A	naly	ysis.	Target cos	ting; Life C	Cycle Costing.	Costing of	service	
	secto Tota	or. Just- 1 Ouali	in-time app	roac	n; N an	d Th	ial Require	ment Plannii	ng; Enterprise	Cost Mana	anning;	
IV	Bend	ch Mark	cing: Balanc	ed S	core	e Car	d and Valu	e-Chain Ana	lvsis. Budgeta	arv Control:	Flexible	14
	Bud	gets; Pe	erformance b	oudg	gets;	Zero	o-based bud	lgets. Measu	rement of Div	visional prof	fitability	
	prici	ng deci	sions includi	ing t	rans	fer p	ricing.					
V	Quantitative techniques for cost management; Linear Programming; PERT/CPM; 14								14			

Text Book/References Books/ Websites:

- 1. Cost Accounting A Managerial Emphasis; Prentice Hall of India; New Delhi.
- 2. Charles T. Horngren and George Foster; Advanced Management Accounting .
- 3. Robert S Kaplan Anthony A. Alkinson; Management & Cost Accounting.
- 4. Ashish K. Bhattacharya; Principles & Practices of Cost Accounting A. H. Wheeler publisher.
- 5. N.D. Vohra; Quantitative Techniques in Management; Tata McGraw Hill Book Co. Ltd.

<u>PEOPLE'S UNIVERSITY, BHOPAL</u> (Applicable for Admitted from Academic Session 2019-20 onwards)

Programme: Master of Technology

y Specialization: Production Engineering

Semester –III

Subject Code	Subject Title	C	Credit		Theory			Practical		
MTDE2201	Optimization	L	Т	Р	External	Internal	Total (100)	External	Internal	Total
MIPE3201	Decision Making	3	1	-	(70)	(30)	Min: 40 (D Grade)	Nil	Nil	Nil
Duration	Duration of Theory (Externals): 3 Hours									
Theory Internal- Max Marks: 30					Best of Two Mid Semester Test –			Assignment/Quiz/Attendance		

	Max Marks: 15	Max. Marks: 15
Practical Internal Max Marks: Nil	Lab work & Sessional –	Assignment / Quiz/Attendance
	Max Marks: Nil	Max. Marks: Nil

Pre-Requisite	Nil
Course Outcome	1. To understand the different optimization techniques with linear and non linear programming
	2. Understand the theoretical workings of the simplex method, the relationship between a linear
	program and its dual, including strong duality and complementary slackness.
	3. Solve specialized linear programming problems like the transportation and assignment
	problems, solve network models like the shortest path, minimum spanning tree, and maximum
	flow problems.

Unit	Contents (Theory)	Marks Weighte ge
	Introduction: Engineering Application of Optimization Multivariable Optimization Statement	weightage
Ι	of Optimization Problem. Design Vector, Design Constraints, Objective Function and Classification of Optimization Problems.	14
п	Classical Optimization Technique: Single Variable Optimization, with Equality Constraints Solution by Direct Substitution, Solution by the method of Constrained Variation. Solution by the method of Lagrange multipliers, Multivariable Optimization with Inequality Constraints.	14
ш	Non-linear Programming: (One Dimensional minimization method) Numerical method, Unimodal function, Unrestricted Search, Exhaustive search. Dichotomous Search, Fibonacci and Golden Section Method.	14
IV	Interpolation Method: Quadratic and Cubic Nonlinear Programming (Unrestricted Optimization Technique) Random Search Methods, Univariate method, Powels Method, Simplex method.	14
v	Descent Methods: Steepest Descent, Conjugate Gradient, Variable Metric Method. Non Linear Programming: (Constrained Optimization problem) Characteristic of a Constrained Problem.	14

Text Book/References Books/ Websites:

- 1. R.L Fox, Optimization methods for Engg. Design by Addison Wesley.
- 2. GSG Beveridge and R.S. Schechter, Optimization Theory and Practice by McGraw Hill.
- 3. RamVan, Optimization and Probability in System Engg. by Nostrand.

14

14

14

<u>PEOPLE'S UNIVERSITY, BHOPAL</u> (Applicable for Admitted from Academic Session 2019-20 onwards)

Pro	ogramr	ne: N	laster of Tec	chno	logy	y	Specializ	zation: Proc	luction Engin	eering	Semester –III		
Subject	Code	Su	bject Title	0	Cred	it		Theory			Practical		
MTDE	2202		Agile	L	Т	Р	External	Internal	Total (100)	External	Interna	l Total	
MIPE	Mai		nufacturing	ng 3 1 - (70) (30) Min: 40 (D Grade) Nil		Nil	Nil	Nil					
Du	ration	of Th	eory (Extern	als)	: 3 I	Hou	rs	è					
Theory	Theory Internal- Max Marks: 30						Best of Two	Mid Semes	ster Test –	Assignment	/Quiz/Att	endance	
							Max Marks:	15		Max. Marks	: 15		
Practic	cal Inte	ernal I	Max Marks:	Nil			Lab work &	Sessional	_	Assignment / Quiz/Attendance			
							Max Marks:	Nil		Max. Marks	: Nil		
Pre-R	equisit	te	Nil										
Course	e Outco	ome	1. To under	stan	d th	e qu	ick productio	n techniques	and changes	production to	chniques	according	
			to market tr	ends	5.								
			2. To under	stan	d the	e imj	portance of manufacturing techniques for optimization.						
			3. To under	stan	d the	e cor	ncepts of lean	manufactur	ing and profita	ability.			
Unit							Contents (T	heory)				Marks	
	Weightage												
т	Introduction: Introduction to Agile Manufacturing, Competitive Environm								nent of the f	uture-	14		
1	The B	usines	ss Case for A	gile	Mar	nufa	cturing Conce	ptual Frame	work for Agil	e Manufactu	ring.	14	
	Agile	Man	ufacturing a	and	Ch	ange	e Manageme	nt: Change	Implications	, Post Failu	res in		
т	Advar	nced	Manufacturir	ıg,	Cha	nges	s on the w	ay, Traditio	onal Manager	ment Accou	nting,	14	
11	Paradi	igm, I	nvestment A	ppra	aisal	, Pro	oduct Costing	- Performa	ance, Measure	ement and C	ontrol	14	

Text Book/R	eferences	Books/	Websites:

Systems.

III

IV

V

1. Paul T. Kidd; Agile Manufacturing -Forging new Frontiers; Addison Wesley- Publication.

Knowledge enhancing Technologies -Scheduling -Technology Design Strategic.

2. Dr. M.P Chowdiah (Editor) Agile Manufacturing -Proceeding of International Conference on Agile Manufacturing, TATA Mc Graw Hill Publications.

Four Core Concepts: Strategy Driven Approach- Integrating Organization, People

Agile Manufacturing Enterprise Design: Agile Manufacturing, Enterprise Design -System Concepts as the basic Manufacturing Theory-Joint Technical & Organizational Design as a

model for the design of Agile Manufacturing Enterprise, Enterprise Design Process, Insights

Skill & Knowledge Enhancing Technologies for Agile Manufacturing: Skill and

into Design Processes, Interdisciplinary Design, Main Issues - Simple Design Example.

3. Paul T Kidd, Concurrent Engg; Addison Wesley Publication.

Technology Interdisciplinary Design Methodology.

4. Paul T Kidd, World Class manufacturing ; Addition Wesley.

<u>PEOPLE'S UNIVERSITY, BHOPAL</u> (Applicable for Admitted from Academic Session 2019-20 onwards)

Pro	ogramme	e: N	laster of Tech	nolo	gy		Specializat	Specialization: Production Engineering Seme				<u>III</u>
Subjee	ct Code	S	ubject Title	0	Credi	it		Theory		P	ractical	
мтр	F3203	De	hust Dosign	L	Т	Р	External	Internal	Total (100)	External	Internal	Total
	E3203	N	Joust Design	3	1	-	(70)	(30)	Min: 40 (D Grade)	Nil	Nil	Nil
Du	ration of	Th	eory (Externa	ls): 3	3 Ho	urs			T			
Theory	y Interna	l- N	1ax Marks: 3()		E	Best of Two N	Iid Semeste	r Test –	Assignment/Qu	iiz/Attenda	nce
D /				701		N	Max Marks: 1	5		Max. Marks: 1	5	1
Practio	cal Interr	nal I	Max Marks: N	Nil			ab work & Sessional – Assignment / Quiz/					ance
						N	Max Marks: N	11		Max. Marks: N	11	
Pre-R	equisite		Nil									
Course	se Outcome 1. Able to understand the market before production, collecting data from market for									tet for plan	ning of	
	production.									-	-	
	2. Able to understand the development and quality engineering applications									tions of 7	Taguchi	
	methods.											
Unit	t Contents (Theory)								М	arks		
Omt	Contents (Theory)									Wei	ghtage	
	Quality by Experimental Design: Quality, western and Taguchi quality philosophy, Elements									ents	0 0	
	of cost,	Noi	se factors caus	ses o	f var	iatio	on, Quadratic	Loss Funct	ion and Var	ation of Quadr	atic	
Ι	Loss Fu	ncti	ons.					\mathbf{N}				14
	Robust	Des	sign: Steps in	Robi	ist D	esig	n: Parameter	Design and	I Tolerance	Design, Reliab	ility	
	Improve	emei	nt through Exp	erim	ents,	Illu	stration throu	gh Numeric	al Examples	3.		
	Experin	nen	tal Design: (lass	ical	expe	eriments: fac	torial expe	riments, ter	minology, fact	ors.	
	Levels,	Inte	eractions, Trea	tmen	$\frac{1}{2}$	mbir	nation, rando	mization, 2	-level exper	imental design	for	14
11	two factor	tors	and three fac	tors.	3-Le	Ever	Experiment	Deigns for	two factors	and three fact	ors,	14
	Compos	ite I	Designs Illusti	ratio	1011S,	ria	Numerical F	lvamples	, Saturated	i Designi, Cer	luai	
	Measur	res o	of Variahility			es c	of variability	Concept of	of confidence	e level. Statist	ical	
m	Distribu	tion	s: Normal. Lo	g No	ormal	and	d Weibull Dis	stributions.	Hypothesis	esting, Probab	ility	14
	plots, ch	noice	e of sample size	e illu	istrat	ion	through nume	erical examp	oles.			
	Analysi	s an	d interpretat	ion o	of exp	peri	mental data:	Measures of	of variability	, Ranking meth	nod,	
137	Column	Eff	fect Method a	nd F	lotti	ng N	Method, Anal	lysis of Va	riance (AN	OVA), in facto	orial	14
11	Experim	nent,	, YATE's A	lgori	thm	for	ANOVA, Re	egression a	nalysis, Ma	thematical Mo	dels	14
	from Experimental Data, illustration through Numerical Examples.											
	Taguch	i's (Orthogonal A	rray	s : T	ype	s Orthogonal	Arrays, Sel	ection of St	andard Orthogo	onal	
V	arrays,	Line	ear graphs an	d In	terac	tion	Assignment	, Dummy	Level Tech	nique, Compo	und	14
	Factor A	vieth	100, Modificat	101 0	DI LII	near	Graphs, Colu	umn Mergii	ng Method,	Branching Des	ıgn,	
	Strategi	8 10	J Constructing	y Ort	nogo	nal 1	Arrays.					

Text Book/References Books/ Websites:

1. B Thomas. Barker, Quality by Experimental Design; Marcel Dekker Inc ASQC Quality Press.

2. C.F. Jeff Wu; Experiments Planning, Analysis and Parameter Design Optimization; Michael Hamada - John Wille.

3. W.L. Condra, Reliability Improvement by Experiments ; Marcel Dekker Inc ASQC Quality Press. Suggested List of Laboratory Experiments :- (Expandable): Nil

<u>PEOPLE'S UNIVERSITY, BHOPAL</u> (Applicable for Admitted from Academic Session 2019-20 onwards)

Programme: Master of Technology

Specialization: Production Engineering

Semester –III

Subject Code	Subject Title	(Credi	t		Theory				Practical			
MTDE202	Pre-	L	Т	Р	External	Internal	Total (100)	Exte	rnal	Internal	Total (300)		
MTPE505	MTPE303 Dissertation		-	6	(Nil)	(Nil)	Nil	(200)		(100)	Min: 120 (D Grade)		
Duration	n of Theory (Ex	terna	ls): l	Nil						•			
Theory Inter	rnal- Max Marl	ks: N	il		Best of Two Mid Semester Test –				 Assignment/Quiz/Attendance 				
		Max Marks: Nil				Max. Marks: Nil							
Practical Int	ternal Max Mai	Lab work & Sessional –				Assignment / Quiz/Attendance							
		Max Marks: 50				Max. Marks: 50							
	•												

Pre-Requisite	Basic Knowledge of concerned discipline of Engineering.
	1. Identify literature and problem identification of research.
Course Outcome	2. Apply engineering principles through efficient handling of project.
	3. Identify appropriate techniques to analyze complex engineering problems.

Unit	Contents (Theory)	Marks
	Pre- Dissertation: Students are required to select a topic of their interest in the third semester and prepare a dissertation on it. Mid semester presentation will include identification of the problem based on the literature review on the topic referring to latest literature available. End semester presentation should be done along with the report on identification of topic for the work and the methodology adopted involving scientific research, collection and analysis of data, determining solutions and must bring out individuals contribution. The student must submit a synopsis at the end of the semester for the approval from the research Approval committee in the specified format and submitted to the university for further Approval and give the power point presentation of the same for Evaluation/Approval.	Weightage 300

Text Book/References Books/ Websites: Nil